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About Apache Spark MLIib

Started at Berkeley AMPLab
(Apache Spark 0.8)

By Apache Spark 2.1 (circa Apr 2017)
Contributions from 75+ orgs, ~250 individuals

‘Development driven by Databricks: roadmap
+50% of PRs

*Growing coverage of distributed algorithms
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MLIib Goals

General Machine Learning library for big data
« Scalable & robust
« Coverage of common algorithms
« Leverages Apache Spark

Tools for practical workflows

Integration with existing data science tools
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Apache Spark MLIib

spark.mllib
Pre MLlib < Spark 1.4

Spark mllib was a
lower level library that
used Spark RDDs

Use LabeledPoint,
Vectors and Tuples

« Maintenance Mode
only after Spark 2.X

// Load and parse the data

val data = sc.textFile("data/mllib/ridge-data/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(",")

LabeledPoint(parts(0).toDouble, Vectors.dense(parts(
1).split(" ").map(_.toDouble)))

}.cache()

// Building the model
val numlterations = 100
val stepSize = 0.00000001

val model = LinearRegressionWithSGD.train(parsedDa
ta, numlterations, stepSize)

// Evaluate model on training examples and compute
training error

val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)

(point.label, prediction)
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Gradient Descent

w(—w—a-Zg(w;xi,yi)

=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <= 1 to numlIterations) {
val gradient = points.map { p =>
(1 7/ (1 + exp(-p.y % w.aot(p.x)) = 1) * p.y % p.X
).reduce(_ + _)
w -= alpha * gradient

}
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k-means (scala)

// Load and parse the data.
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map(_.split(‘ ').map(_.toDouble)).cache()

// Cluster the data into two classes using KMeans.
val clusters = KMeans.train(parsedData, 2, numlterations = 20)

// Compute the sum of squared errors.

val cost = clusters.computeCost(parsedData)
println(”Sum of squared errors = " + cost)
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k-means (python)

# Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line:
array([float(x) for x in line.split(’' “)])).cache()

# Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations = 10,
runs = 1, initialization_mode = "kmeans||")
# Evaluate clustering by computing the sum of squared errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)l]))

cost = parsedData.map(lambda point: error(point))

.reduce(lambda x, y: x + y)
print(”"Sum of squared error = " + str(cost))
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Dimension Reduction + k-means

// compute principal components

val points: RDD[Vector] = ...

val mat = RowRDDMatrix(points)

val pc = mat.computePrincipalComponents(20)

// project points to a low-dimensional space
val projected = mat.multiply(pc).rows

// train a k-means model on the projected data
val model = KMeans.train(projected, 10)
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Collaborative Filtering
via Alternating Least Square (ALS) method

// Load and parse the data
val data = sc.textFile("mllib/data/als/test.data"”)
val ratings = data.map(_.split(’',') match {
case Array(user, item, rate) =>
Rating(user.toInt, item.toInt, rate.toDouble)

1)

// Build the recommendation model using ALS
val model = ALS.train(ratings, 1, 20, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product, rate) =>
(user, product)

}

val predictions = model.predict(usersProducts)
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Combine Machine Learning with Streaming

"Learn models offline, apply them online

// Learn model offline
val model = KMeans.train(dataset, ...)

// Apply model online on stream
kaftkaStream.map { event =>

model.predict(event.feature)

Spark Core
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Spark Streaming + MLIib

// collect tweets using streaming

// train a k-means model
val model: KMmeansModel = ...

// apply model to filter tweets
val tweets = TwitterUtils.createStream(ssc, Some(authorizations(2)))

val statuses = tweets.map(_.getText)
val filteredTweets =
statuses.filter(t => model.predict(featurize(t)) == clusterNumber)

// print tweets within this particular cluster
filteredTweets.print()
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Streaming MLlIib Algorithms

Continuous learning and prediction on streaming data

StreamingLinearRegression, StreamingKMeans,
StreamingLogisticRegression

val model = new StreamingKMeans()
.setK(10).setDecayFactor(1.0).setRandomCenters(4, ©.0)

model.trainOn(trainingDStream) // Train on one DStream

// Predict on another DStream
model.predictOnValues( testDStream.map { lp => (lp.label, lp.features) } )

-n-spark-1-2.ntmi

lines = KafKaUtils.createStream(
streamingContext, kafkaTopics, kafkaParams)

counts = lines.flatMap(lambda line: line.split(" "))
Spark ML 14



Spark SQL + MLIib

// Data can easily be extracted from existing sources,
// such as Apache Hive.
val trainingTable = sql("""
SELECT e.action,
u.age,
u.latitude,
u.longitude
FROM Users u
JOIN Events e
ON u.userId = e.userId""")

// Since ‘sqgl' returns an RDD, the results of the above
// query can be easily used in ML1lib.
val training = trainingTable.map { row =>
val features = Vectors.dense(row(1), row(2), row(3))
LabeledPoint(row(®), features)

}

val model = SYMWithSGD.train(training)

Spark ML 15



Spark SQL and MLIib

training_data_table = sql("""
SELECT e.action, u.age, u.latitude, u.logitude
FROM Users u
JOIN Events e ON u.userId = e.userId""")

def featurize(u):

LabeledPoint(u.action, [u.age, u.latitude, u.longitude])

// SQL results are RDDs so can be used directly in MLL1ib.

training_data = training_data_table.map(featurize)

model = new LogisticRegressionWithSGD.train(training_data)
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GraphX + MLIib

// assemble link graph
val graph = Graph(pages, links)
val pageRank: RDD[ (Long, Double)] = graph.staticPageRank(12).vertices

// load page labels (spam or not) and content features
val labelAndFeatures: RDD[ (Long, (Double, Seq((Int, Double)))] = ...
val training: RDD[LabeledPoint] =

labelAndFeatures. join(pageRank) .map {

case (id, ((label, features), pageRank)) =>
LabeledPoint (1abel, Vectors.sparse(features ++ (1000, pageRank))

}

// train a spam detector using logistic regression
val model = LogisticRegressionWithSGD.train(training)
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Evolution of the Apache Spark MLIib
g scala f‘%a I'T @

W Ppeines

Spark ;

DataFrames

Spark Core
t ‘ Data Sources t t
Gty | G bt B D SON}  wsd [clestcseard

Started with Spark 0.8 in AMPLab in 2014 with RDD-based API.

Migration to Spark DataFrames (aka spark.ml) since v1.3 and aims to
achieve feature-parity by v2.3.

RDD-based MLIib APl entered maintenance mode (i.e. no new features
added) since v2.0 ; expected to be removed by v3.0.

Contributions by 75+ orgs, ~250 individuals.
Distributed algorithms that scale linearly with the data.

In 2018, the MLflow platform (mlflow.spark) emerged to provide API for
logging & loading MLIib models to enhance the complete ML lifecycle.



Machine Learning Support for Spark
(via MLlIib or spark.mil)

Classification
Logisti regression wy/ elastic net
Naive Bayes
Streaming logistic regression
Linear SVMs
Decision trees
Random forests
Gradient-boosted trees
Multilayer perceptron
One-vs-rest

Regression

Least squares wy elastic net
Isotonic regression

Decision trees
Random forests

Gradient-boosted trees
Streaming linear methods

Recommendation
Alternating Least Squares
Frequent itemsets

FP-growth
Prefix span

Feature extraction & selection

Binarizer

Bucketizer

Chi-Squared selection
Count\ectorizer
Discrete cosine transform
ElementwiseProduct
Hashing term frequency
Inverse document frequency
MinMaxScaler

Ngram

Normalizer

One-Hot Encoder

PCA
PolynomialExpansion
RFormula
SQLTransformer
Standard scaler
StopWord sRemover
Stringindexer

Tokenizer

Stringindexer
VectorAssembler
Vectorndexer
VectorSlicer

Word2Vec

Clusteﬂ ng

Gaussian mixture models
K-Means

Streaming K-Means
Latent Dirichlet Allocation
Power Iteration Clustering

Statlstlcs

Pearson correlation

Spearman correlation
Online summarization
Chi-squared test

Kemel density estimation

Llnear algebra

Local dense & sparse vectors & matrices
Distributed matrices
Block-partitioned matrix
Row matrix
Indexed row matrix

Coordinate matrix
Matrix decompaositions

Model import/export
Pipelines

List based on Spark 1.5
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Machine Learning Support for Spark
(via MLIib or spark.ml) steesesonspark20

sClassification

n Logistic regression

n Naive Bayes

n Streaming logistic regression
n Linear SVMs

n Decision trees

n Random forests

n Gradient-boosted trees

n Multilayer perceptron

sRegression

n Ordinary least squares

n Ridge regression

n Lasso

n Isotonic regression

n Decision trees

n Random forests

n Gradient-boosted trees

n Streaming linear methods

n Generalized Linear Models

sFrequent itemsets

n FP-growth
n PrefixSpan

Recommendation

Alternating Least Squares

Feature extraction &
selection

‘Word2Vec

Chi-Squared selection
-Hashing term frequency
«Inverse document frequency
‘Normalizer

.Standard scaler
«Tokenizer

«One-Hot Encoder
-StringIndexer
Vectorindexer
VectorAssembler
«Binarizer

-Bucketizer
-ElementwiseProduct
-PolynomialExpansion
«Quantile discretizer
-SQL transformer

Model import/export
Pipelines

-Matrix decompositions

Clustering

«Gaussian mixture models
‘K-Means

Streaming K-Means
-Latent Dirichlet Allocation
-Power Iteration Clustering
-Bisecting K-Means

Statistics

Pearson correlation
Spearman correlation
«Online summarization
«Chi-squared test

Kernel density estimation
‘Kolmogorov-Smirnov test
‘Online hypothesis testing
-Survival analysis

Linear algebra

Local dense & sparse vectors & matrices
‘Normal equation for least squares
-Distributed matrices

- Block-partitioned matrix
« Row matrix

+ Indexed row matrix

« Coordinate matrix
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An Ideal ML Workflow

Measure /
AVEIEE
Results

Deploy Model

Train-Tune-Test
Model

Set Business
Goals

Prepare Data

Understand
Your Data

Create
Hypothesis

Devise
Experiment
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But Real-World ML workflows are complex

= Specify the pipeline
= Re-run on new data
= |nspect the results

= Tune the parameters

= Usually, each step of a pipeline is easier
with one framework

Spark ML 22



Real-world ML Workflows (Pipelines)
are Complex

ource 2 ]

[Datasource 1] [ Datas\

[ Datasource 3 ]

[ Extract‘ features] [ Extr ——

\‘/aCt‘featu — ]

[Feature transform 1]

\

[Feature transform 2]

\

[Feature transform 3]

[ Train model 1 ]

Train model 2 ]

Ensemble

|

[ Evaluate ]
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Example: Text Classification

Goal: Given a text document, predict its topic.

Features

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic @
polish. It will help somewhat

but nothing will remove deep
scratches without making it

worse than it already 1is.
McQuires will do something...

\

text, image, vector, ...

?

Dataset: “20 Newsgroups'
From UCI KDD Archive

1: about science
0: not about science

\

CTR, inches of rainfall, ...

Spark ML 24



Training

Given labeled data:
RDD of (features, label)

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic

polish. It will help...

Subject: RIPEM FAQ
RIPEM is a program which
performs Privacy Enhanced...

Learn a model.

Training & Testing

Label 0

Label 1

Testing/Production

Given new unlabeled data:

RDD of features

Subject: Apollo Training
The Apollo astronauts also

-y Label 1

-
trained at (in) Meteor...

Subject: A demo of Nonsense
How can you lie about

—_—) Label 0

something that no one...

Use model to make predictions.

Spark ML 25



Example ML Workflow

Training
Pain point

l Load data l / Create many RDDs

‘ labels + plain text val labels: RDD[Double] =

data.map(_ .label)
Extract features

l labels + feature vectors

Train model

l labels + predictions

labels.zip(predictions) .map {
P (L= _.2) ..

}

val features: RDD[Vector]
val predictions: RDD[Double]

Explicitly unzip & zip RDDs

Spark ML 26



Example ML Workflow

Traiﬂiﬂg Pain point

Write as a script

Load dat
[oa_aa] e Not modular

l labels + plain text

e Difficult to re-use workflow

[ Extract features ]

l labels + feature vectors

Train model

l labels + predictions

| Evaluate l

Spark ML 27



Example ML Workflow

Training

[ Load data ] Pain point
l labels + plain text

Parameter tuning

[ Extract features ] e Key part of ML
* Involves training many models
e For different splits of the data

[ Train model ] * Fordifferent sets of parameters

l labels + predictions

l labels + feature vectors

[ Evaluate ]

Spark ML 28



Example ML Workflow

Almost
Training identical Testing/Production
workflow
l Load data l l Load new data l
l labels + plain text & plain text
l labels + feature vectors & feature vectors
Predict using model
l labels + predictions l predictions

| Evaluate l l Act on predictions I

Spark ML 29



Recap the Pain Points

Create & handle many RDDs and data types
Write as a script
Tune parameters

Enter...

Pipelines ! in Spark 1.2 & 1.3

Spark ML 30



Apache Spark — ML Pipelines

« spark.ml

« Spark>1.4

« Spark.ML
pipelines - able
to create more
complex models

* Integrated with
DataFrames

// Let's initialize our linear
regression learner
val lr = new LinearRegression ()

// Now we set the parameters for the
method

lr.setPredictionCol ("Predicted PE")
.setLabelCol ("PE") .setMaxIter (100) .setRe

gParam(0.1)

// We will use the new spark.ml pipeline
API. If you have worked with scikit-
learn this will be very familiar.

val lrPipeline = new Pipeline ()
lrPipeline.setStages (Array (vectorizer,
1r))

// Let's first train on the entire
dataset to see what we get
val l1lrModel =

lrPipeline.fit(trainingSet)
Spark ML 31



Key Concepts of ML Pipeline in Spark

DataFrames: Provide a Unified API to hold the ML Dataset

= Structured Data with Flexible Types
= Add & Remove Columns during ML Pipeline execution
= Distributed, Optimized Implementation

The notion of Pipeline in Spark MLIib

= To support Simple construction and Tuning of Machine
Learning Workflows

Abstractions for ML Pipeline:
= [ransformers, Estimators and Evaluators

Parameters: APl & Tuning
ML Pipeline API similar to scikit-learn

Spark ML 32



Use a DataFrame to hold the ML dataset
under processing

Original 5 Feature _ | Predictive | _J B elimtion
dataset extraction model

Text

| boughtthe game... 4
Do NOT bother try...

i
this shirt isaweso... 5
1

nevergotit.
Seller...

: | ordered this to... 3

Spark ML 33



Original
dataset

Extract Features
Predictive
model

| bought the game... (L0589,
“bought
Do NOT bothertry... 1 sc oot T N [OOS 10
this shirt isaweso... 5 sthis® =shirE N N[0 253 [
nevergotit. 1 “never”,“got” [1,2,0,0,...]
Seller...
" Lardered this to 3 “i” “ordered” [1.0.03 .1

—p Evaluation
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Fit a Model

Original Feature Predictive Eualiatish
dataset extraction model

-
-
=

’7 ?
I
|

~

\

~

~

Probabmty

| bought the game... 50,39,
“bought
Do NOT bothertry... 1 “afofe Hareie, | Rl aitde L | 0.6
this shirt isaweso... 5 RIS shintE N N[0 273 1 [ 5 0.9
nevergotit. 1 “never”,“got” [1,2,0,0,...] il 0.7
Seller...
_Lordered this to 3 S1E S rd el S N R ) 3] 4 07
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Evaluate Performance

Original Feature
dataset extraction

| bought the game... [1L0.2,9,.
“bought
Do NOT bothertry... 1 coffsnot TG O 10 R 0.6
this shirt isaweso... 5 NSt st o NG 25 3 N1 5 0.9
nevergotit. 1 “never”, “got” [1,2,0,0,...] 1l 0.7
Seller...
" Lardered this to 3 “i” “ordered” [1.003 1] 4 0.7
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Key Concepts in ML Pipeline in Spark

s [ransformer:

= An algorithm which can transform one Dataframe into another
Dataframe.

Example: ML model is a Transformer which transforms a DataFrame with
features into a DataFrame with predictions

s Estimator:

= An algorithm which can be fitted on a DataFrame to produce a
Transformer.

Example: A learning algorithm is an Estimator which trains on a
Dataframe and produces a model (i.e. a Transformer)

= Pipeline:

= A sequence of PipelineStages (i.e. a chain of Transformers and
Estimators) to be run in a specific order to realize a ML workflow.

= Evaluator:

= A Transformer which computes a Metric to measure how well a fitted
model does on held-out test data

= Parameters: API & Tuning

References:
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-mllib/spark-mllib-evaluators.html
https://spark.apache.org/docs/latest/ml-pipeline.html#parameters Spark ML 37



More details on Pipeline Components

Transformers

sA Transformer is an abstraction that includes feature transformers and learned models. Technically, a
Transformer implements a method transform(), which converts one DataFrame into another, generally by
appending one or more columns. For example:

sA feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g.,
feature vectors), and output a new DataFrame with the mapped column appended.

=A learning model might take a DataFrame, read the column containing feature vectors, predict the label for
each feature vector, and output a new DataFrame with predicted labels appended as a column.

Estimators

sAn Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on data.
Technically, an Estimator implements a method fit(), which accepts a DataFrame and produces a Model, which
is a Transformer. For example, a learning algorithm such as LogisticRegression is an Estimator, and calling fit()
trains a LogisticRegressionModel, which is a Model and hence a Transformer.

sA Predictor is a specialization of Estimator for a PredictionModel with its own abstract train method()

Evaluators
sAn Evaluator is a transformer that maps a Dataframe into a metric showing how good a model is.

Params and ParamMap:
sMLIib Estimators and Transformers use an uniform API for specifying parameters
sA Param is a named parameter with self-contained doc ; A ParamMap is a set of (parameter, value) pairs

= WO main ways to pass parameters to an algorithm:

= Set parameters for an instance. E.g., if Ir is an instance of LogisticRegression, one could call Ir.setMaxlter(10) to make
Irfit() use at most 10 iterations. This API resembles the API used in spark.mllib package.

= Pass a ParamMap to fit() or transform(). Any parameters in the ParamMap will override parameters previously specified
via setter methods.
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¥

Extract features

4
1 a

| Evaluate I

Load Data

Data sources for DataFrames

built-in
% Parquet E&J
{JSON}

MySQL.

s inn|S3

JDBC

PostgreSQL

external

Amazon Redshift

[Q <dBase

elasticsearch.

cassandra

and more ..
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Load Data

Current data schema

' oad dat label: Int
oacca? text: String

¥
¥
¥

Train model

[ Evaluate ]
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Training Workflow

Load data

Extract features

Train model

Evaluate
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Abstraction: Transformer

Training

Extract features

[ Train model ]

|

[ Evaluate ]

def transform(DataFrame) :

T e
ot

label: Double
texts String e |

s

DataFrame
- o ™
e ]
¢ label: Double
texts: Stxring
Tres : Vector
__—-—-—/
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Training

[ Extract features ]

¥
|

[ Evaluate ]

Abstraction: Estimator

def fit (DataFrame): Model

=
x

-
o

X - o

\

label: Double

-

F s IS ErAng
features: Vector

e s

o

LogisticRegression
Model
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Abstraction: Evaluator

Training

| Extract features I
I Train model l

def evaluate (DataFrame) :

e TS
e e B
label: Double

text: String

Nt 11 e Ta~t ~
aat o C = ,
rFreatlleSsS e V €

prediction: Double

N T

o

Double

Metric:

accuracy
AUC
MSE
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Abstraction: Model

Testing/Production

Model is a type of Transformer

def transform(DataFrame) : DataFrame
e T S i
P it s \\\‘“‘_ i::::::>
[ Extract features ] text: String E> text: Strin
¢ features: Vector features: Vector
prediction: Double
Predict using model e T
[__Predict using model -

|

[ Act on predictions ]

Spark ML 45



(Recall) Abstraction: Estimator

Training

[ Load data ]

|

[ Extract features ]

¥
!

[ Evaluate ]

def fit (DataFrame):

P
&

N
o

label: Double

: String

features: Vector

\

L o

o

Model

LogisticRegression
Model
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Abstraction: Pipeline

Traini ng Pipeline is a type of Estimator

def fit (DataFrame): Model
Load data

2 i T
k P
l Extract features I
label: Double PipelineModel
l' text: String

l Train model ' e —
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Abstraction: PipelineModel

Testing/Production

[ Load data ]

[ Extract features ]

|

[ Predict using model ]

[ Act on predictions ]

PipelineModel is a type of Transformer

def transform(DataFrame) :

S T
S— B
text: String
S IR0

o

DataFrame

e
x

TR
P

text:

features:
prediction:

x

String
Vector
Double

St
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DataFrame

Transformer

Estimator

Evaluator

Summary of Abstractions

Training

v

-

[ Extract features ]

|

[

Train model

]

Testing

v

(

~

[ Extract features ]

|

[

Predict using model

\

/

v
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DataFrame

Transformer

Transformer

Estimator

Evaluator

A Pipeline Example

Training

Tokenizer

y

HashingTF ]

Y

Current data schema

()

| [ LogisticRegression ] ‘

[ BinaryClassification ]
Evaluator

label: Double
text: 'String

words: Seq[String]

features: Vector

prediction: Double

Spark ML 50



Parameters

Standard API > hashingTF.numFeatures
@ Typed org.apache.spark.ml.param.IntParam =
e Defaults numFeatures: number of features

e (default: 262144)
e Built-in doc

e Autocomplete .
> hashingTF.setNumFeatures (1000)

> hashingTF.getNumFeatures

Spark ML 51



Parameter Tuning

Given:

« Estimator .

. Paanuﬁergnd Tokenizer hashingTF.numFeatures
. Evaluator J {100, 1000, 10000}
Find best parameters HashingTF

|

[ LogisticRegression ]

lr.regParam

CrossValidator 0201 0d: Dabi

BinaryClassification ]
Evaluator
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Sample Code for an ML Pipeline

tokenizer = Tokenizer(inputCol="text", outputCol="words™)
hashingTF = HashingTF(inputCol="words", outputCol="features”)
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, 1lr])

df = sqlCtx.load("/path/to/data")
model = pipeline.fit(df)
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Summary of Spark ML Pipelines

DataFrame —> Create & handle many RDDs and data types

Abstractions ——— Write as a script
Parameter APl —— Tune parameters

Also

e Python, Scala, Java APIs
e Schema validation

e User-Defined Types*

e Feature metadata*

 Multi-model training optimizations*

Inspirations

scikit-learn
+ Spark DataFrame, Param API

MLBase (Berkeley AMPLab)
Ongoing collaborations

= Also Support Models Import and Export via “ML Persistence”
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Enabling Interactive (Big) Data Science with
SparkR

Spark early adopters

®

Data Engineers

Users . :
Data Scientists
Understands Statisticians
MapReduce

: R users
& functional APIs PyData ..
Fast! Statistical!
Scalable Spqﬂ(z + @ Packages
Flexible Interactive
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SparkR — R package for Spark

= R Interface support via SparkR (R with RDD = R2D2) é_jﬂ |
since Spark 1.4 (released since June 2015) ‘E 7
= Exposes DataFrames and MLIib in R: & Iy

df = jsonFile(“tweets.json”)

summarize(

group_by (
df [dffuser == “matei”,],

“date”),
sum(“retweets”))
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SparkR — R package for Spark
RDD - distributed lists

SparkR Run R on clusters

Re-use existing packages

Combine scalability & utility
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Getting closer to Idiomatic R

Q: How can | use a loop to [...insert task
here| 2

A: Don’t. Use one of the apply functions.

From: http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/
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SparkR

R + RDD =
RRDD

&

lapply
lapplyPartition
groupByKey
reduceByKey
sampleRDD

@ collect

Wi cache
Mg

N=1e

' 4

broadcast
includePackage
textFile
parallelize
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Example: Word Counting with SparkR

lines <- textFile(sc, "hdfs://my text file")

words <- flatMap(lines,
function(line) {
strsplit(line, " ")[[1]]
})
wordCount <- lapply(words,
function(word) {
list(word, 1L)
1)
counts <- reduceByKey(wordCount, "+", 2L)

output <- collect(counts)
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Example: Logistic Regression with SparkR

pointsRDD <- textFile(sc, "hdfs://myfile")
weights <- runif(n=D, min = -1, max = 1)

# Logistic gradient
gradient <- function(partition) {
X <- partition[,1]; Y <- partition[,-1]

t(X) %*% (1/(1 + exp(-Y * (X %*% weights))) - 1) * Y

}

# Iterate
weights <- weights - reduce(

lapplyPartition(pointsRDD, gradient), "+")
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SparkR Implementation

= Very similar to PySpark

= Relatively easy to extend Spark

s 329 lines of Scala code
= 2079 lines of R code
s 693 lines of Test code in R
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Spark: A Recap and Future Directions
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Powerful Stack — Agile Development

140000

120000 - L
Your Application

here
A

100000 -

80000 -

___________

60000 T _» GraphX

40000 - parkSQL
N .
Streaming

20000 -

O -

Hadoop Storm  Impala (SQL) Giraph Spark
MapReduce (Streaming) (Graph)

non-test, non-example source lines



Spark/ BDAS Timeline till v2.0

research Spark 1.0 & libraries
paper (SQL, ML, GraphX) Spark 2.0

Databricks !
started started s
@ & donated ?tangratmes
ungsten
to ASF
ekl ML Pipelines
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Major Features in Spark 2.0

&\ © o

Tungsten Phase 2 Structured Streaming  Unifying Datasets
speedups of 5-10x real-time engine and DataFrames
on SQL/DataFrames
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Boosting Spark Performance via
Project Tungsten

Goal

To Overcome JVM Performance limitations and bring Spark
performance closer to Bare Metal via:

=Native Memory Management and Binary Processing: leveraging
application semantics to manage memory explicitly and eliminate
the overhead of JVM object model and garbage collection

sCache-aware computation: algorithms and data structures to
exploit memory hierarchy

=Runtime Code generation: using code generation to exploit
modern compilers and CPUs
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Project Tungsten: Key areas of Optimization

Data

: Code Generation
representations

Inspired by traditional database systems

Broadcasting

Aggregation and Shuffling
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Optimized Data Representations

= Java Objects have two downsides:
= Space overheads
= Garbage collection overheads

= Tungsten sidesteps these problems by performing its
own manual memory management
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Further Performance Optimization via
Project Tungsten

Python Java/Scala SQL
Q
DataFrame
Logical Plan

JVM
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Phased introduction of Tungsten

In Spark 1.4-1.6

sAdded Binary Storage and Basic Code Generation
sDataFrame + Dataset APIs enable Tungsten in User Programs
sTungsten also being used under SparkSQL + parts of MLIib

By Spark 2.0
sWhole-stage Code Generation Spark 16 |l gjvhs"/s
= Remove expensive Iterator calls
= Fuse across multiple operators
m\/ector Processing

= Optimized Input/Output Parquet 11M

125M

Spark 2.0
P rows/s

1y . in 1.6
= Parquest + Built-in Cache " rows/s
Parquet 90M
in 2.0 rows/s

Automatically applies to SQL, DataFrames, Datasets
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Spark Ver. 2.0 Stack (circa 2015)
DataFrame + Tungsten

: Advanced
Syl Analytics

DataFrame (& Dataset)

Tungsten Execution
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Evolution Timeline of Spark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matet Zaharia. Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Sp a rk l O & l| b ra n‘ es

Murpiry McCauley, Michael J. Frenkfin, Scott Shenker, Jon Stoica

Usivercyof G, Beeley |SQL, ML, Gra D hXI Apache Spark 20 2122
Structured Streaming
Cost Based Optimizer

Deep Learning Pipelines

Easier
g Nulelgls
*  Faster

2015

2016-17

Databricks

started |
Started & donated DataFrames/Datasets

@ to ASF Tungsten
UC Berkeley Catalyst Optimizer
ML Pipelines
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Spark 1.6 vs. Spark 2.x

Spark 1.6.x

Spark SQL /

DtaE e MLIib (DF based)

Legend:
Optimized
libraries
- Spark 2.x.x
Spark SQL /
DataFrames / MLlib (DF based) 2:::::’ GraphFrames
Datasets g
Legend:
Optimized
libraries




Foundational Spark 2.x Components

Structured

ML Pipelines Streaming

GraphFrames

SQL DataFrame/Dataset
Spark SQL
Catalyst

Spark Core (RDD)

cass'andra
elasticsearch.
and more...
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Long Term Role of
RDD, DataFrames & DataSets on Spark

= RDD as the low-level APl in Spark

= For control and certain type-safety in Java/ Scala

= Datasets & DataFrames give richer semantics &
optimizations
= For semi-structured data and DSL like operations

= New libraries will increasingly use these as interchange
format

= Examples: Structured Streaming, MLib, GraphFrames,

and Deep Learning Pipelines &
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SparkSession subsumes SparkContext

s Starting v2.0, SparkSession becomes the unified entry point,
l.e. a Conduit, to Spark
= Create Datasets/ DataFrames
= Read/Write Data
= Work with metadata
= Set/Get Spark Configuration
= Driver uses for Cluster Resource Management

SparkSession vs.

Spa rkContext Worker Node SparkSessions Subsumes
« SparkContext
i « SQLContext
- « HiveContext
i I Lo ” L I « StreamingContext

« SparkConf
SparkContext Cluster Manager Er

/
Worker Node
\ Executor @v

| Task || Task |

warehouselocation =

spark = SparkSession
.builder()

.appName ( )
.config( warehouselLocation)
.enableHiveSupport()

.getOrCreate() park Part II 77




Major Features in Spark 2.0

@

Structured Streaming
real-time engine
on SQL/DataFrames

=

Unifying Datasets
and DataFrames

Tungsten Phase 2
speedups of 5-10x
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Major Features since Spark 2.2

<

l: — DL__] = ?/C” :
) BF 38 % & [

Continuous Data Spark on PySpark ML on History
Processing Source Kubernetes Performance Streaming Server V2
API V2
% b " e *
e =21 Z &7 o SQL
Stream-stream UDF Image Native ORC Stable Various SQL
Join Enhancements Reader Support Codegen Features
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Key Features in Apache Spark 2.3 & 2.4

Apache Spark 2.3.0

Data Source APl V2

Native Vectorized ORC Reader
Pandas UDFs for PySpark
Continuous Stream Processing

Apache Spark and Kubernetes

See also What'’s new in Apache Spark 2.3 by Xiao Li and
Wenchen Fan

Apache Spark 2.4.0

Barrier Execution

Pandas UDFs: Grouped Aggregate
Avro/Image Data Source
Higher-order Functions

Apache Spark and Kubernetes

See also What’s new in Upcoming Apache Spark 2.4 by
Xiao Li
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Summary of
Key Efforts in Spark 2.X (ver2.4 circa Nov 2018)

= Structured Streaming
= Unification of the APIs
= Event-time Aggregations/ Processing to handle out-of-order/late data
= Other Streaming sources/sinks
= Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames

= Support of Continuous Processing model, i.e. true (low-latency) streaming
instead of stream processing via micro-batching.

= Spark over Kubernetes: deploying Spark not only as a framework but also as a
containerized distributed application/ library !

= Machine Learning — Optimized Model Tuning
= lteration as a First-Class concept in DataFrames
= Cost-based Query Optimization for ML/Graph Algorithms
=« Caching, Communication, Serialization, Compression
= Spark + GPUs
= High-level API for Deep-Learning Pipeline in Spark MLIib
= Built on TensorFlow, Keras, BigDL
= Project Hydrogen - enhancing Integration of other ML frameworks with Spark
= Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow



More Details on some
Key Features since Spark 2.2

<

I H ”| — = ) o -
Eg[ilgg i%%% EQ L\%%{Fm

Continuous Data Spark on PySpark ML on
Processing Source Kubernetes Performance Streaming
API V2
°_°a b %T =
EE 5 = 3 '03 }ﬁm
Stream-stream UDF Image Native ORC Stable
Join Enhancements Reader Support Codegen

=

History
Server V2

*
SQL

Various SQL
Features
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Continuous (Stream) Processing

= A new execution mode introduced since V2.2 that
allows fully pipelined execution (like Flink)
= Streaming execution without micro-batches
= Support asynchronous checkpoints and ~1msec latency
=> To enable Spark to stay competitive with Flink
= No changes required for user codes.

= Still WIP, not all features are supported as of Mar
2019.

= See initial proposal at:

= https://issues.apache.org/jira/browse/SPARK-20928
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Continuous (Stream) Processing (cont'd)

Structured Streaming

DataFrame or SQL Query
data.where($“state” === “CA")
.groupBy(window($“time”, “30s”))
‘ .avg(“latency™)
Input Streams
1100 4 Structured Streaming
OCI000] .g’ _ Microbatch Output Sink
© O / Execution
= N
o I E -
Spark Tables = 4
o o
| 5
£

i

Log State Store
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Continuous (Stream) Processing (cont'd)

Micro Batch Execution

’,
’
g— .
&7 [
'
s’
>
(&

to-be-processed offsets
saved to a write-ahead-log
before starting micro-batch

[ Spark driver }---czz:;c--;;:: ________

. _tasksin every micro-batch

\
\
\
\

1
1
u_ short tasks

RVl

driver launches short

“~.___to process events

A
\
\

1
|
u_ short tasks

L

S

b
\
\

]
1
u_ short tasks

input event
stream

micro-batch

micro-batch

Is

N S e L L

micro-batch ' >

Latency > 100ms Exactly-once Semantics
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Continuous (Stream) Processing (cont'd)

Micro Batch Execution

micro-batch boundaries
(interval of seconds)

time when eventsare o @ e @ @ @ P
available at source : ;
i 'y [ : ' i
time wheq process.ed PAAS PAASS paS44
events are written to sink ' ‘ ' :
second-scale
end-to-end
latencies

See also Continuous Processing in Structured Streaming by Josh Torres
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Continuous (Stream) Processing (cont'd)

DataFrame or SQL Query
data.where($“state” === “CA")
.groupBy(window($“time”, “30s”))
r .avg(“Tlatency”)
Input Streams
- -l. & Structured Streaming
INIE 8| | | Microbatch Output Sink
© @ Execution
C 4 é -
Spark Tables QEJ o ,
- @ '®) Continuous
)= Processing
 Ca =2 .
An experimental
) Ej execution mode
Log State Store
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Continuous (Stream) Processing (cont'd)

driver launches long-
Sparkdriver - running tasks at the
" start of the query tasks process evgnts as soon as
! they are available at source

= i
long running tasks continuously processing events

inputevent oo T AT T
stream :iiiepoch::: ',4 iigpogh:: 9 :epoch::: 9>
processed offsets saved ‘
to a write-ahead-log after e
every epoch & s
Latency ~1Tms At-least once Semantics
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Continuous (Stream) Processing (cont'd)

Structured Streaming: Continuous Processing

time when events are @ ® o @ ™ © @
available at source :

long running Spark tasks
continuously processing events

time when processed

events are written to = >4 ’ = = 1 g
. ms-scale
sink ™ andl d
end-to-en epoch markers for
latencies checkpointing progress

See also Continuous Processing in Structured Streaming by Josh Torres
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Continuous (Stream) Processing (cont'd)

spark

. readStream

.format( source = "kafka")

.option("kafka.bootstrap.servers”, "hostl:portl,host2:port2")
.option("subscribe", "topicl")

. Lload()

.selectExpr( exprs = "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream

. format( source = "kafka")

.option("kafka.bootstrap.servers”, "hostl:portl,host2:port2")
.option("topic", "topicl")

.trigger(Trigger.Continuous( interval = "1 second")) // only change in query |

.Startl)

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#continuous-processing

See also Spark Summit Keynote Demo by Michael Armbrust
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Continuous (Stream) Processing (cont'd)

Supported Operations Supported Sources
» Kafka Source

* Map-like Dataset Operations
* Rate Source

— Projections

— Selections Supported Sinks
* All SQL functions  Kafka Sink

— Except current_timestamp(), « Memory Sink

current date() and

: : * Console Sink
aggregation functions

Blog: https;//tinyurl.com/spark-cp
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Major Features since Spark 2.2

<

l: — DL__] = ?/C” :
) BF 38 % & [

Continuous Data Spark on PySpark ML on History
Processing Source Kubernetes Performance Streaming Server V2
APl V2

< S h : *
2= F ' &7 ) SO
tream-stream UDF Image Native ORC Stable Various SQL
Join Enhancements Reader Support Codegen Features
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Stream to Stream Joins (in V2.3)

> (adld, impressionTime)>

Stream-stream
Join

buffered
Impressions

join

(adld, impressionTime, clickTime)

> (adld, clickTime) >

buffered
clicks

See also Introducing Stream-Stream Joins in Apache Spark 2.3 by Tathagata Das and Joseph Torres
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)

Continuous
Processing

(V1)

Stream-stream
Join

— 0]
SS  55
=] D

Data
Source
APl V2

K

UDF

Enhancements

Spark on
Kubernetes

Image
Reader

Major Features since Spark 2.2

L} S :
& [ S\ [Ba
PySpark ML on History
Performance Streaming Server V2
[—] .
&7 I x ] SQL
Native ORC Stable Various SQL
Support Codegen Features
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ML on Streaming ML'
on

Streaming

= ML model transformation/ prediction on Batch and
Streaming data with Unified API

= After fitting a ML model or ML Pipeline, user can
deploy it in a Streaming job

m val streamOutput = transformer.transform(streamDF)
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)

Continuous
Processing

(V1)

Stream-stream
Join

Major Features since Spark 2.2

Data
Source
APl V2

Kl

UDF
Enhancements

Spark on
Kubernetes

Image
Reader

[Do ;
Crm
PySpark
Performance

Native ORC
Support

&%’CF&J

ML on
Streaming

I x ]

Stable
Codegen

=

History
Server V2

*
SQL

Various SQL
Features
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Apache Spark on Kubernetes
Spark SQL + Structured :
-
kubernetes

apiserver

scheduler

Client

See also: https://spark.apache.org/docs/2.3.2/running-on-kubernetes.html  Spark Part II 97



Apache Spark on Kubernetes (cont’'d)

= Driver runs in a Kubernetes pod created by the
submission client and creates pods that run the
executors in response to requests from the Spark
Scheduler

= Make direct use of Kubernetes clusters for Multi-
tenancy and sharing through Namespaces and
Quotas, as well as administrative features such as
Pluggable Authorization and Logging.
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Apache Spark 2.3.0

Apache Spark and Kubernetes (cont'd)

Supports Kubernetes 1.6 and up .
Supports cluster mode only .
Static resource allocation only

Supports Java and Scala applications

Can use container-local and remote
dependencies that are downloadable

Apache Spark 2.4.0 (Roadmap)

Client mode

Dynamic resource allocation + external
shuffle service

Python and R support

Submission client local dependencies +
Resource staging server (RSS)

Non-secured and Kerberized HDFS
access (injection of Hadoop
configuration)

Blog: https://tinyurl.com/spark-k8s
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Better Support ML/ Al in Production
with MLflow
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Hidden Technical Debt in Machine Learning Systems

(A NIPS 2015 paper from Google)

Configuration

Data Collection

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.
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MLflow
Goal of MLflow:

= To provide the tools to simplify the ML lifecycle (in an industrial
production-grade environment)

= A Lightweight, open platform that integrates with other ML systems
readily

Available APIs: Python, Java and R
Develop model locally and track runs locally or remotely
Deploy locally, cloud or on premise
Visualize experiments
Components of MLflow:

ml7/c ml7/c

Record and query Packaging format General model format
experiments: code, for reproducible that supports diverse
configs, results, runs deploymenttools

...etc on any platform




Model Development without MLflow

data load_text( ) .1: accuracy=0.
ngrams extract_ngrams(data, .2: accuracy=0.
model train_model(ngrams, .5: accuracy=0.
) .9: accuracy=0.

score compute_accuracy(model) .1: accuracy=0.
: accuracy=0.

print(* ' % - n=4, .5: accuracy=0.

% (n, 1lr, score))

pickle.dump(model, open( What version of

my code was this
result from?
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Key Concepts in Tracking with MLflow

Parameters: Key-value inputs to your code
Metrics: numeric values (can update over time)
Tags and Notes: information about a run
Artifacts: files, data and models

Source: what code was run ?

Version: Which version of the code ?
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MLflow Tracking API

mlflow

ml

# log model’s tuning parameters

with mlflow.start_run():
mlflow.log_param("layers", layers)
mlflow.log _param("alpha”, alpha)

Record and query

experiments: Code, i log model’s metrics
confios. results mlflow.log metric("mse", model.mse())
85 : mlflow.log_artifact("plot", model.plot(test_df))

..etc mlflow.tensorflow.log model(model)
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Model Development with MLflow

data load_text(file)
ngrams = extract_ngrams(data, N=n
model train_model(ngrams,

aar ~ate=1r)

compute_accu;acy(model)

Track parameters, metrics,
output files & code version

Search using Ul or API

= Data Scientist/ Model developer can track, inspect and
compare the results of the running of different models/

parameters via the MLflow Ul
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MLflow Tracking

| Python,
Notebooks Java, R or
— \ REST API

@7.

Local Apps

y -
Cloud Jobs @ $ export MLFLOW TRACKING URI <URI>
(

mlflow.set tracking uri(URI)
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Model Deployment without MLflow

DATA & " % PRODUCTION

AT
SCIENTIST 4 ) /Vd/  ENGINEER
4, Code & Models m

Please deploy this
ArXiv paper!
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Packaging Code: MLflow Projects

Y P— A O
T i {2
(] @ e}

Code Deps Config g Remote Cluster %

databricks &
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Example MLflow Project

my project/
Ml_pr‘oj ect conda_env: conda.yaml

entry points:
main:
parameters:
training_data: path
lambda: {type: float, default: 0.1}
command: python main.py {training_data} {lambda}

conda.yaml
main.py
model.py
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Packaging Models: MLflow Models

TensorFlow @ ‘.

Inference Code

Spark

Batch & Stream Scoring

& ONNX Flavor \\
S Azure
Machine Learning

-

| Python Flavor

Standard for ML models
ML Frameworks Serving Tools &

B
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1%

Example MLflow Model

model/

MLmodel run_id: 769915006efd4c4bbd662461
time_created: 2018-06-28T12:34
flavors:

tensorflow:
saved_model _dir: estimator
signature_def_key: predict
python_function:
loader_module: mlflow.tensorflow

estimator/
P—— saved model.pb
- variables/

Usable by tools that understand
TensorFlow model format

Usable by any tool that can run
Python (Docker, Spark, etc!)
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Model Deployment with MLflow

AN | @ PRODUCTION
SCIENTIST | , ,v“/ ENGINEER

Please run this Don’t even tell me
MLflow Project what ArXiv paper
nightly for updates! that’s from...
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Ongoing MLflow Roadmap (circa Jan 2019)

Tensorflow, Keras, PyTorch, H20, MLleap, MLlIib
iIntegrations

Java and R MLflow Client language APlIs
Multi-step Workflows

Hyperparameter Tuning

Integration with Databricks Tracking Server
Support for Data Store (e.g. MySQL)
Stablize MLflow APls 1.0

Model metadata, management and registry
Hosted MLflow

Just released v8.0.1
Faster & Improved Ul
Extended Python Model
as Spark UDF

Persist model
dependencies as Conda
Environment




Project Hydrogen:
Better Integration of other ML/ Al frameworks
with Spark
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Two Challenges in supporting
ML frameworks in Spark

D @

Data exchange: Execution model:
need to push data in high fundamental incompatibility between
throughput between Spark and Spark (embarrassingly parallel) vs ML
ML frameworks frameworks (gang scheduled)

Spark Part II 116



User Defined Functions (UDFs)

= UDFs allow the execution of arbitrary code ; often
used for integration with ML frameworks

= €.g., Prediction on data using Tensorflow

= But Exchanging data with UDFs only is carried out
only One-Row-at-a-Time => Waste CPU cycles

P e e e e O e e S e 1 e e

i Spark i
T FishnY 4.1 7 . 2 john 4.1
B |
2 mike 35 ; i
]
: i
3 sally 64 z i
il il
il il
il il
il il
| R W ———— Ryiy——
r --'---- =7 £33 e Y e e 1 e o -=
i
i

| UDF (x+1)
NSO N 11 117




Introducing “Vectorized Data Exchange”
= UDFs run 3x to 240x faster !

ﬁ

jei==j==l==jemjenl=mf=lam} tjemjomi=mjempemleni=mj=ngon]a—-]
L---- s o o e e e e e e

p
3
4

. [S— —

r
o
i UDF (x+1)
L
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Execution Models

Spark
Tasks are independent of each other

Embarrassingly parallel & massively scalable

Distributed ML Frameworks

Complete coordination among tasks

Optimized for communication

Task 1

Task 2
Task 3

O

O

A 4

O

Task 1

w

Task 2

Task 3
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What if a Task Crashes ?

Spark
Tasks are independent of each other

Embarrassingly parallel & massively scalable

If a task crashes, rerun that one

Distributed ML Frameworks

Complete coordination among tasks
Optimized for communication

If a task crashes, must rerun all tasks

=> |ncompatible Execution

Task 1 O

Task 2 O
Task 3 B,

Task 1

Task 2

models |

Task 3

Spark Part II 120



Unifying Execution Models with
Barriers Execution (aka Gang Execution)

Stage 1 Stage 2 Stage 3
data prep distributed ML training data sink
embarrassingly parallel gang scheduled embarrassingly parallel

e e B B 3
| K b | 1 O ' i
I | I | : :
e - — O 4
| | ! I :
O S e e
| | I I :
I | I I |

———————————— ————————————— — B - —————————————————— —— —— ——————————————— —————— ——————

tasks “all or nothing”
to reconcile fundamental incompatibility
between Spark and distributed ML frameworks
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Roadmap to support
Barrier Execution (aka Gang Execution)

Apache Spark 2.4
* [SPARK-24374] barrier execution mode

Apache Spark 3.0

* [SPARK-24374] barrier execution mode
* [SPARK-24579] optimized data exchange

* [SPARK-24615] accelerator-aware scheduling

See also Project Hydrogen: Unifying State-of-the-art Al and Big Data in Apache Spark by Reynold Xin
See also Project Hydrogen: State-of-the-Art Deep Learning on Apache Spark by Xiangrui Meng
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Project Hydrogen

10 to 100X Faster Unify Spark + ML
Data Exchange Execution Model
Timeline

= Spark 2.3 (Spring 2018): Basic Vectorized UDFs

s Spark 2.4 (Fall 2018): Barrier Scheduler and more
Vectorized UDFs support

= Spark 3.0 (2019): General Avalilability (GA) and
standard format for data

See also . by Reynold Xin
See also : by Xiangrui Meng 123



Summary of
Key Efforts in Spark 2.X (ver2.4 circa Nov 2018)

= Structured Streaming
= Unification of the APIs
= Event-time Aggregations/ Processing to handle out-of-order/late data
= Other Streaming sources/sinks
= Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames

= Support of Continuous Processing model, i.e. true (low-latency) streaming
instead of stream processing via micro-batching.

= Spark over Kubernetes: deploying Spark not only as a framework but also as a
containerized distributed application/ library !

= Machine Learning — Optimized Model Tuning
= lteration as a First-Class concept in DataFrames
= Cost-based Query Optimization for ML/Graph Algorithms
=« Caching, Communication, Serialization, Compression
= Spark + GPUs
= High-level API for Deep-Learning Pipeline in Spark MLIib
= Built on TensorFlow, Keras, BigDL
= Project Hydrogen - enhancing Integration of other ML frameworks with Spark
= Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow



Summary of
Key New Features in Spark 2.4.x
(part of Databricks Runtime 5.2 ML)
(circa Jan 2019)

Using HorovodRunner for Distributed Deep Learning Training
= Integrating Horovod with Spark’s Barrier mode
=« Simplified workflow for multi-GPU machines

https://docs.databricks.com/applications/machine-learning/train-model/distributed-
fraining/horovod-runner.himl

https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

GraphFrames to add a Pregel-like API

Enhance Databricks Runtime support for TensorBoard (visualization toolkit for
Tensorflow)

Speed-up Cluster start-time when Pytorch is included.

https://databricks.com/blo hg¥/2019/01/3O/databr|<:ks -runtime-5-2-ml-features-multi-gpu-workflow-pregel-api-

and-performant-graphirames.html


https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

Summary of
Key New Features in Spark 3.0
(part of Databricks Runtime 7.0)
(circa June 2020)

= ANSI SQL Compliance

= 2Xx performance improvement on TPC-DS (SQL benchmark) over

Spark 2.4 by Adaptive Query execution, Dynamic Partition Pruning
and other optimizations.

= New Ul for Structured Streaming

= Improvements in Pandas APls

= Better Python error Handling

= Speed-up in calling R UDF (upto 40x)

https://databricks.com/blog/2020/06/18/introducing-apache-spark-3-0-now-
available-in-databricks-runtime-7-0.html
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Summary of
Key New Features in Spark 3.1
(part of Databricks Runtime 8.0)
(circa March 2021)

ANSI SQL Compliance

More Query Optimization

Shuffle Hash Join improvements

History Server support of Structured Streaming

Project Zen has been initiated to:

= Provide Better Interoperability with other Python libraries
= Improve PySpark’s Usability

https://databricks.com/blog/2021/03/02/introducing-apache-spark-3-1.html

Spark Part II 127



Summary of
Key New Features in Spark 3.2
(part of Databricks Runtime 10.0)
(circa Oct 2021)

Pandas API layer on PySpark — (from Project Zen)
= Also provide Interactive Data visualization

ANSI SQL Compliance - ANSI Mode GA

Productionize Adaptive Query Execution to speedup Spark SQL at runtime
Introduce RockDB State-store to enable scalable state processing
Event-time based Session Window support

Support push-based Shuffle

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html

https://spark.apache.org/releases/spark-release-3-2-0.html

https://spark.apache.org/third-party-projects.html



https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html
https://spark.apache.org/releases/spark-release-3-2-0.html
https://spark.apache.org/third-party-projects.html

