IEMS5730/ IERG4330/ESTR4316
Spring 2022

sk

Machine Learning Support and Beyond

Prof. Wing C. Lau
Department of Information Engineering
wclau@ie.cuhk.edu.hk

Acknowledgements

= These slides are adapted from the following sources:

= Matei Zaharia, “Spark 2.0,” Spark Summit East Keynote, Feb 2016.
= Reynold Xin, “The Future of Real-Time in Spark,” Spark Summit East Keynote, Feb 2016.

= Michael Armburst, “Structuring Spark: SQL, DataFrames, DataSets, and Streaming,” Spark Summit East Keynote, Feb
2016.

= Ankur Dave, “GraphFrames: Graph Queries in Spark SQL,” Spark Summit East, Feb 2016.

= Michael Armburst, “Spark DataFrames: Simple and Fast Analytics on Structured Data,” Spark Summit Amsterdam, Oct
2015.

= Michael Armburst et al, “Spark SQL: Relational Data Processing in Spark,” SIGMOD 2015.

= Michael Armburst, “Spark SQL Deep Dive,” Melbourne Spark Meetup, June 2015.

= Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.

= Joseph K. Bradley, “Apache Spark MLlIib’s past trajectory and new directions,” Spark Summit Jun 2017.

= Joseph K. Bradley, “Distributed ML in Apache Spark,” NYC Spark MeetUp, June 2016.

= Ankur Dave, “GraphFrames: Graph Queries in Apache Spark SQL,” Spark Summit, June 2016.

= Joseph K. Bradley, “GraphFrames: DataFrame-based graphs for Apache Spark,” NYC Spark MeetUp, April 2016.

= Joseph K. Bradley, “Practical Machine Learning Pipelines with MLIib,” Spark Summit East, March 2015.

= Joseph K. Bradley, “Spark DataFrames and ML Pipelines,” MLconf Seattle, May 2015.

= Ameet Talwalkar, “MLlib: Spark’s Machine Learning Library,” AMPCamps 5, Nov. 2014.

= Shivaram Venkataraman, Zongheng Yang, “SparkR: Enabling Interactive Data Science at Scale,” AMPCamps 5, Nov.
2014.

= Tathagata Das, “Spark Streaming: Large-scale near-real-time stream processing,” O’Reilly Strata Conference, 2013.
= Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” AMPCAMP 3, 2013.

= Jules Damiji, “Jumpstart on Apache Spark 2.X with Databricks,” Spark Sat. Meetup Workshop, Jul 2017.

= Sameer Agarwal, “What’s new in Apache Spark 2.3,” Spark+Al Summit, June 2018.

= Reynold Xin, Spark+Al Summit Europe, 2018.

= Hyukjin Kwon of Hortonworks, “What’s New in Spark 2.3 and Spark 2.4,” Oct 2018.

= Matel Zaharia, “MLflow: Accelerating the End-to-End ML Lifecycle,” Nov. 2018.

= Jules Damiji, “MLflow: Platform for Complete Machine Learning Lifecycle,” PyData, Jan 2019.

= All copyrights belong to the original authors of the materials.
Spark ML 2

About Spark for MLIib

Sparlf Spark SQL MLL_'b
Streaming <ol machine
real-time learning

GraphX
graph

Spark ML 3

About Apache Spark MLIib

Started at Berkeley AMPLab
(Apache Spark 0.8)

By Apache Spark 2.1 (circa Apr 2017)
Contributions from 75+ orgs, ~250 individuals

‘Development driven by Databricks: roadmap
+50% of PRs

*Growing coverage of distributed algorithms

Spark ML 4

MLIib Goals

General Machine Learning library for big data
« Scalable & robust
« Coverage of common algorithms
« Leverages Apache Spark

Tools for practical workflows

Integration with existing data science tools

Spark ML 5

Apache Spark MLIib

spark.mllib
Pre MLlib < Spark 1.4

Spark mllib was a
lower level library that
used Spark RDDs

Use LabeledPoint,
Vectors and Tuples

« Maintenance Mode
only after Spark 2.X

// Load and parse the data

val data = sc.textFile("data/mllib/ridge-data/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(",")

LabeledPoint(parts(0).toDouble, Vectors.dense(parts(
1).split(" ").map(_.toDouble)))

}.cache()

// Building the model
val numlterations = 100
val stepSize = 0.00000001

val model = LinearRegressionWithSGD.train(parsedDa
ta, numlterations, stepSize)

// Evaluate model on training examples and compute
training error

val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)

(point.label, prediction)
Spark ML 6

Gradient Descent

w(—w—a-Zg(w;xi,yi)

=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <= 1 to numlIterations) {
val gradient = points.map { p =>
(1 7/ (1 + exp(-p.y % w.aot(p.x)) = 1) * p.y % p.X
).reduce(_ + _)
w -= alpha * gradient

}

Spark ML 7

k-means (scala)

// Load and parse the data.
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map(_.split(‘ ').map(_.toDouble)).cache()

// Cluster the data into two classes using KMeans.
val clusters = KMeans.train(parsedData, 2, numlterations = 20)

// Compute the sum of squared errors.

val cost = clusters.computeCost(parsedData)
println(”Sum of squared errors = " + cost)

Spark ML 8

k-means (python)

Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line:
array([float(x) for x in line.split(’' “)])).cache()

Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations = 10,
runs = 1, initialization_mode = "kmeans||")
Evaluate clustering by computing the sum of squared errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)l]))

cost = parsedData.map(lambda point: error(point))

.reduce(lambda x, y: x + y)
print(”"Sum of squared error = " + str(cost))

Spark ML 9

Dimension Reduction + k-means

// compute principal components

val points: RDD[Vector] = ...

val mat = RowRDDMatrix(points)

val pc = mat.computePrincipalComponents(20)

// project points to a low-dimensional space
val projected = mat.multiply(pc).rows

// train a k-means model on the projected data
val model = KMeans.train(projected, 10)

Spark ML 10

Collaborative Filtering
via Alternating Least Square (ALS) method

// Load and parse the data
val data = sc.textFile("mllib/data/als/test.data"”)
val ratings = data.map(_.split(’',') match {
case Array(user, item, rate) =>
Rating(user.toInt, item.toInt, rate.toDouble)

1)

// Build the recommendation model using ALS
val model = ALS.train(ratings, 1, 20, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product, rate) =>
(user, product)

}

val predictions = model.predict(usersProducts)

Spark ML 11

Combine Machine Learning with Streaming

"Learn models offline, apply them online

// Learn model offline
val model = KMeans.train(dataset, ...)

// Apply model online on stream
kaftkaStream.map { event =>

model.predict(event.feature)

Spark Core

Spark ML 12

Spark Streaming + MLIib

// collect tweets using streaming

// train a k-means model
val model: KMmeansModel = ...

// apply model to filter tweets
val tweets = TwitterUtils.createStream(ssc, Some(authorizations(2)))

val statuses = tweets.map(_.getText)
val filteredTweets =
statuses.filter(t => model.predict(featurize(t)) == clusterNumber)

// print tweets within this particular cluster
filteredTweets.print()

Spark ML 13

Streaming MLlIib Algorithms

Continuous learning and prediction on streaming data

StreamingLinearRegression, StreamingKMeans,
StreamingLogisticRegression

val model = new StreamingKMeans()
.setK(10).setDecayFactor(1.0).setRandomCenters(4, ©.0)

model.trainOn(trainingDStream) // Train on one DStream

// Predict on another DStream
model.predictOnValues(testDStream.map { lp => (lp.label, lp.features) })

-n-spark-1-2.ntmi

lines = KafKaUtils.createStream(
streamingContext, kafkaTopics, kafkaParams)

counts = lines.flatMap(lambda line: line.split(" "))
Spark ML 14

Spark SQL + MLIib

// Data can easily be extracted from existing sources,
// such as Apache Hive.
val trainingTable = sql("""
SELECT e.action,
u.age,
u.latitude,
u.longitude
FROM Users u
JOIN Events e
ON u.userId = e.userId""")

// Since ‘sqgl' returns an RDD, the results of the above
// query can be easily used in ML1lib.
val training = trainingTable.map { row =>
val features = Vectors.dense(row(1), row(2), row(3))
LabeledPoint(row(®), features)

}

val model = SYMWithSGD.train(training)

Spark ML 15

Spark SQL and MLIib

training_data_table = sql("""
SELECT e.action, u.age, u.latitude, u.logitude
FROM Users u
JOIN Events e ON u.userId = e.userId""")

def featurize(u):

LabeledPoint(u.action, [u.age, u.latitude, u.longitude])

// SQL results are RDDs so can be used directly in MLL1ib.

training_data = training_data_table.map(featurize)

model = new LogisticRegressionWithSGD.train(training_data)

Spark ML 16

GraphX + MLIib

// assemble link graph
val graph = Graph(pages, links)
val pageRank: RDD[(Long, Double)] = graph.staticPageRank(12).vertices

// load page labels (spam or not) and content features
val labelAndFeatures: RDD[(Long, (Double, Seq((Int, Double)))] = ...
val training: RDD[LabeledPoint] =

labelAndFeatures. join(pageRank) .map {

case (id, ((label, features), pageRank)) =>
LabeledPoint (1abel, Vectors.sparse(features ++ (1000, pageRank))

}

// train a spam detector using logistic regression
val model = LogisticRegressionWithSGD.train(training)

Spark ML 17

Evolution of the Apache Spark MLIib
g scala f‘%a I'T @

W Ppeines

Spark ;

DataFrames

Spark Core
t ‘ Data Sources t t
Gty | G bt B D SON} wsd [clestcseard

Started with Spark 0.8 in AMPLab in 2014 with RDD-based API.

Migration to Spark DataFrames (aka spark.ml) since v1.3 and aims to
achieve feature-parity by v2.3.

RDD-based MLIib APl entered maintenance mode (i.e. no new features
added) since v2.0 ; expected to be removed by v3.0.

Contributions by 75+ orgs, ~250 individuals.
Distributed algorithms that scale linearly with the data.

In 2018, the MLflow platform (mlflow.spark) emerged to provide API for
logging & loading MLIib models to enhance the complete ML lifecycle.

Machine Learning Support for Spark
(via MLlIib or spark.mil)

Classification
Logisti regression wy/ elastic net
Naive Bayes
Streaming logistic regression
Linear SVMs
Decision trees
Random forests
Gradient-boosted trees
Multilayer perceptron
One-vs-rest

Regression

Least squares wy elastic net
Isotonic regression

Decision trees
Random forests

Gradient-boosted trees
Streaming linear methods

Recommendation
Alternating Least Squares
Frequent itemsets

FP-growth
Prefix span

Feature extraction & selection

Binarizer

Bucketizer

Chi-Squared selection
Count\ectorizer
Discrete cosine transform
ElementwiseProduct
Hashing term frequency
Inverse document frequency
MinMaxScaler

Ngram

Normalizer

One-Hot Encoder

PCA
PolynomialExpansion
RFormula
SQLTransformer
Standard scaler
StopWord sRemover
Stringindexer

Tokenizer

Stringindexer
VectorAssembler
Vectorndexer
VectorSlicer

Word2Vec

Clusteﬂ ng

Gaussian mixture models
K-Means

Streaming K-Means
Latent Dirichlet Allocation
Power Iteration Clustering

Statlstlcs

Pearson correlation

Spearman correlation
Online summarization
Chi-squared test

Kemel density estimation

Llnear algebra

Local dense & sparse vectors & matrices
Distributed matrices
Block-partitioned matrix
Row matrix
Indexed row matrix

Coordinate matrix
Matrix decompaositions

Model import/export
Pipelines

List based on Spark 1.5

Spark ML 19

Machine Learning Support for Spark
(via MLIib or spark.ml) steesesonspark20

sClassification

n Logistic regression

n Naive Bayes

n Streaming logistic regression
n Linear SVMs

n Decision trees

n Random forests

n Gradient-boosted trees

n Multilayer perceptron

sRegression

n Ordinary least squares

n Ridge regression

n Lasso

n Isotonic regression

n Decision trees

n Random forests

n Gradient-boosted trees

n Streaming linear methods

n Generalized Linear Models

sFrequent itemsets

n FP-growth
n PrefixSpan

Recommendation

Alternating Least Squares

Feature extraction &
selection

‘Word2Vec

Chi-Squared selection
-Hashing term frequency
«Inverse document frequency
‘Normalizer

.Standard scaler
«Tokenizer

«One-Hot Encoder
-StringIndexer
Vectorindexer
VectorAssembler
«Binarizer

-Bucketizer
-ElementwiseProduct
-PolynomialExpansion
«Quantile discretizer
-SQL transformer

Model import/export
Pipelines

-Matrix decompositions

Clustering

«Gaussian mixture models
‘K-Means

Streaming K-Means
-Latent Dirichlet Allocation
-Power Iteration Clustering
-Bisecting K-Means

Statistics

Pearson correlation
Spearman correlation
«Online summarization
«Chi-squared test

Kernel density estimation
‘Kolmogorov-Smirnov test
‘Online hypothesis testing
-Survival analysis

Linear algebra

Local dense & sparse vectors & matrices
‘Normal equation for least squares
-Distributed matrices

- Block-partitioned matrix
« Row matrix

+ Indexed row matrix

« Coordinate matrix

Spark ML 20

An Ideal ML Workflow

Measure /
AVEIEE
Results

Deploy Model

Train-Tune-Test
Model

Set Business
Goals

Prepare Data

Understand
Your Data

Create
Hypothesis

Devise
Experiment

Spark ML 21

But Real-World ML workflows are complex

= Specify the pipeline
= Re-run on new data
= |nspect the results

= Tune the parameters

= Usually, each step of a pipeline is easier
with one framework

Spark ML 22

Real-world ML Workflows (Pipelines)
are Complex

ource 2]

[Datasource 1] [Datas\

[Datasource 3]

[Extract‘ features] [Extr ——

\‘/aCt‘featu —]

[Feature transform 1]

\

[Feature transform 2]

\

[Feature transform 3]

[Train model 1]

Train model 2]

Ensemble

|

[Evaluate]

Spark ML 23

Example: Text Classification

Goal: Given a text document, predict its topic.

Features

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic @
polish. It will help somewhat

but nothing will remove deep
scratches without making it

worse than it already 1is.
McQuires will do something...

\

text, image, vector, ...

?

Dataset: “20 Newsgroups'
From UCI KDD Archive

1: about science
0: not about science

\

CTR, inches of rainfall, ...

Spark ML 24

Training

Given labeled data:
RDD of (features, label)

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic

polish. It will help...

Subject: RIPEM FAQ
RIPEM is a program which
performs Privacy Enhanced...

Learn a model.

Training & Testing

Label 0

Label 1

Testing/Production

Given new unlabeled data:

RDD of features

Subject: Apollo Training
The Apollo astronauts also

-y Label 1

-
trained at (in) Meteor...

Subject: A demo of Nonsense
How can you lie about

—_—) Label 0

something that no one...

Use model to make predictions.

Spark ML 25

Example ML Workflow

Training
Pain point

l Load data l / Create many RDDs

‘ labels + plain text val labels: RDD[Double] =

data.map(_ .label)
Extract features

l labels + feature vectors

Train model

l labels + predictions

labels.zip(predictions) .map {
P (L= _.2) ..

}

val features: RDD[Vector]
val predictions: RDD[Double]

Explicitly unzip & zip RDDs

Spark ML 26

Example ML Workflow

Traiﬂiﬂg Pain point

Write as a script

Load dat
[oa_aa] e Not modular

l labels + plain text

e Difficult to re-use workflow

[Extract features]

l labels + feature vectors

Train model

l labels + predictions

| Evaluate l

Spark ML 27

Example ML Workflow

Training

[Load data] Pain point
l labels + plain text

Parameter tuning

[Extract features] e Key part of ML
* Involves training many models
e For different splits of the data

[Train model] * Fordifferent sets of parameters

l labels + predictions

l labels + feature vectors

[Evaluate]

Spark ML 28

Example ML Workflow

Almost
Training identical Testing/Production
workflow
l Load data l l Load new data l
l labels + plain text & plain text
l labels + feature vectors & feature vectors
Predict using model
l labels + predictions l predictions

| Evaluate l l Act on predictions I

Spark ML 29

Recap the Pain Points

Create & handle many RDDs and data types
Write as a script
Tune parameters

Enter...

Pipelines ! in Spark 1.2 & 1.3

Spark ML 30

Apache Spark — ML Pipelines

« spark.ml

« Spark>1.4

« Spark.ML
pipelines - able
to create more
complex models

* Integrated with
DataFrames

// Let's initialize our linear
regression learner
val lr = new LinearRegression ()

// Now we set the parameters for the
method

lr.setPredictionCol ("Predicted PE")
.setLabelCol ("PE") .setMaxIter (100) .setRe

gParam(0.1)

// We will use the new spark.ml pipeline
API. If you have worked with scikit-
learn this will be very familiar.

val lrPipeline = new Pipeline ()
lrPipeline.setStages (Array (vectorizer,
1r))

// Let's first train on the entire
dataset to see what we get
val l1lrModel =

lrPipeline.fit(trainingSet)
Spark ML 31

Key Concepts of ML Pipeline in Spark

DataFrames: Provide a Unified API to hold the ML Dataset

= Structured Data with Flexible Types
= Add & Remove Columns during ML Pipeline execution
= Distributed, Optimized Implementation

The notion of Pipeline in Spark MLIib

= To support Simple construction and Tuning of Machine
Learning Workflows

Abstractions for ML Pipeline:
= [ransformers, Estimators and Evaluators

Parameters: APl & Tuning
ML Pipeline API similar to scikit-learn

Spark ML 32

Use a DataFrame to hold the ML dataset
under processing

Original 5 Feature _ | Predictive | _J B elimtion
dataset extraction model

Text

| boughtthe game... 4
Do NOT bother try...

i
this shirt isaweso... 5
1

nevergotit.
Seller...

: | ordered this to... 3

Spark ML 33

Original
dataset

Extract Features
Predictive
model

| bought the game... (L0589,
“bought
Do NOT bothertry... 1 sc oot T N [OOS 10
this shirt isaweso... 5 sthis® =shirE N N[0 253 [
nevergotit. 1 “never”,“got” [1,2,0,0,...]
Seller...
" Lardered this to 3 “i” “ordered” [1.0.03 .1

—p Evaluation

Spark ML 34

Fit a Model

Original Feature Predictive Eualiatish
dataset extraction model

-
-
=

’7 ?
I
|

~

\

~

~

Probabmty

| bought the game... 50,39,
“bought
Do NOT bothertry... 1 “afofe Hareie, | Rl aitde L | 0.6
this shirt isaweso... 5 RIS shintE N N[0 273 1 [5 0.9
nevergotit. 1 “never”,“got” [1,2,0,0,...] il 0.7
Seller...
_Lordered this to 3 S1E S rd el S N R) 3] 4 07

Spark ML 35

Evaluate Performance

Original Feature
dataset extraction

| bought the game... [1L0.2,9,.
“bought
Do NOT bothertry... 1 coffsnot TG O 10 R 0.6
this shirt isaweso... 5 NSt st o NG 25 3 N1 5 0.9
nevergotit. 1 “never”, “got” [1,2,0,0,...] 1l 0.7
Seller...
" Lardered this to 3 “i” “ordered” [1.003 1] 4 0.7

Spark ML 36

Key Concepts in ML Pipeline in Spark

s [ransformer:

= An algorithm which can transform one Dataframe into another
Dataframe.

Example: ML model is a Transformer which transforms a DataFrame with
features into a DataFrame with predictions

s Estimator:

= An algorithm which can be fitted on a DataFrame to produce a
Transformer.

Example: A learning algorithm is an Estimator which trains on a
Dataframe and produces a model (i.e. a Transformer)

= Pipeline:

= A sequence of PipelineStages (i.e. a chain of Transformers and
Estimators) to be run in a specific order to realize a ML workflow.

= Evaluator:

= A Transformer which computes a Metric to measure how well a fitted
model does on held-out test data

= Parameters: API & Tuning

References:
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-mllib/spark-mllib-evaluators.html
https://spark.apache.org/docs/latest/ml-pipeline.html#parameters Spark ML 37

More details on Pipeline Components

Transformers

sA Transformer is an abstraction that includes feature transformers and learned models. Technically, a
Transformer implements a method transform(), which converts one DataFrame into another, generally by
appending one or more columns. For example:

sA feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g.,
feature vectors), and output a new DataFrame with the mapped column appended.

=A learning model might take a DataFrame, read the column containing feature vectors, predict the label for
each feature vector, and output a new DataFrame with predicted labels appended as a column.

Estimators

sAn Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on data.
Technically, an Estimator implements a method fit(), which accepts a DataFrame and produces a Model, which
is a Transformer. For example, a learning algorithm such as LogisticRegression is an Estimator, and calling fit()
trains a LogisticRegressionModel, which is a Model and hence a Transformer.

sA Predictor is a specialization of Estimator for a PredictionModel with its own abstract train method()

Evaluators
sAn Evaluator is a transformer that maps a Dataframe into a metric showing how good a model is.

Params and ParamMap:
sMLIib Estimators and Transformers use an uniform API for specifying parameters
sA Param is a named parameter with self-contained doc ; A ParamMap is a set of (parameter, value) pairs

= WO main ways to pass parameters to an algorithm:

= Set parameters for an instance. E.g., if Ir is an instance of LogisticRegression, one could call Ir.setMaxlter(10) to make
Irfit() use at most 10 iterations. This API resembles the API used in spark.mllib package.

= Pass a ParamMap to fit() or transform(). Any parameters in the ParamMap will override parameters previously specified
via setter methods.

Spark ML 38

¥

Extract features

4
1 a

| Evaluate I

Load Data

Data sources for DataFrames

built-in
% Parquet E&J
{JSON}

MySQL.

s inn|S3

JDBC

PostgreSQL

external

Amazon Redshift

[Q <dBase

elasticsearch.

cassandra

and more ..

Spark ML 39

Load Data

Current data schema

' oad dat label: Int
oacca? text: String

¥
¥
¥

Train model

[Evaluate]

Spark ML 40

Training Workflow

Load data

Extract features

Train model

Evaluate

Spark ML 41

Abstraction: Transformer

Training

Extract features

[Train model]

|

[Evaluate]

def transform(DataFrame) :

T e
ot

label: Double
texts String e |

s

DataFrame
- o ™
e]
¢ label: Double
texts: Stxring
Tres : Vector
__—-—-—/

Spark ML 42

Training

[Extract features]

¥
|

[Evaluate]

Abstraction: Estimator

def fit (DataFrame): Model

=
x

-
o

X - o

\

label: Double

-

F s IS ErAng
features: Vector

e s

o

LogisticRegression
Model

Spark ML 43

Abstraction: Evaluator

Training

| Extract features I
I Train model l

def evaluate (DataFrame) :

e TS
e e B
label: Double

text: String

Nt 11 e Ta~t ~
aat o C = ,
rFreatlleSsS e V €

prediction: Double

N T

o

Double

Metric:

accuracy
AUC
MSE

Spark ML 44

Abstraction: Model

Testing/Production

Model is a type of Transformer

def transform(DataFrame) : DataFrame
e T S i
P it s \\\‘“‘_ i::::::>
[Extract features] text: String E> text: Strin
¢ features: Vector features: Vector
prediction: Double
Predict using model e T
[__Predict using model -

|

[Act on predictions]

Spark ML 45

(Recall) Abstraction: Estimator

Training

[Load data]

|

[Extract features]

¥
!

[Evaluate]

def fit (DataFrame):

P
&

N
o

label: Double

: String

features: Vector

\

L o

o

Model

LogisticRegression
Model

Spark ML 46

Abstraction: Pipeline

Traini ng Pipeline is a type of Estimator

def fit (DataFrame): Model
Load data

2 i T
k P
l Extract features I
label: Double PipelineModel
l' text: String

l Train model ' e —

Spark ML 47

Abstraction: PipelineModel

Testing/Production

[Load data]

[Extract features]

|

[Predict using model]

[Act on predictions]

PipelineModel is a type of Transformer

def transform(DataFrame) :

S T
S— B
text: String
S IR0

o

DataFrame

e
x

TR
P

text:

features:
prediction:

x

String
Vector
Double

St

Spark ML 48

DataFrame

Transformer

Estimator

Evaluator

Summary of Abstractions

Training

v

-

[Extract features]

|

[

Train model

]

Testing

v

(

~

[Extract features]

|

[

Predict using model

\

/

v

Spark ML 49

DataFrame

Transformer

Transformer

Estimator

Evaluator

A Pipeline Example

Training

Tokenizer

y

HashingTF]

Y

Current data schema

()

| [LogisticRegression] ‘

[BinaryClassification]
Evaluator

label: Double
text: 'String

words: Seq[String]

features: Vector

prediction: Double

Spark ML 50

Parameters

Standard API > hashingTF.numFeatures
@ Typed org.apache.spark.ml.param.IntParam =
e Defaults numFeatures: number of features

e (default: 262144)
e Built-in doc

e Autocomplete .
> hashingTF.setNumFeatures (1000)

> hashingTF.getNumFeatures

Spark ML 51

Parameter Tuning

Given:

« Estimator .

. Paanuﬁergnd Tokenizer hashingTF.numFeatures
. Evaluator J {100, 1000, 10000}
Find best parameters HashingTF

|

[LogisticRegression]

lr.regParam

CrossValidator 0201 0d: Dabi

BinaryClassification]
Evaluator

Spark ML 52

Sample Code for an ML Pipeline

tokenizer = Tokenizer(inputCol="text", outputCol="words™)
hashingTF = HashingTF(inputCol="words", outputCol="features”)
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, 1lr])

df = sqlCtx.load("/path/to/data")
model = pipeline.fit(df)

Spark ML 53

Summary of Spark ML Pipelines

DataFrame —> Create & handle many RDDs and data types

Abstractions ——— Write as a script
Parameter APl —— Tune parameters

Also

e Python, Scala, Java APIs
e Schema validation

e User-Defined Types*

e Feature metadata*

 Multi-model training optimizations*

Inspirations

scikit-learn
+ Spark DataFrame, Param API

MLBase (Berkeley AMPLab)
Ongoing collaborations

= Also Support Models Import and Export via “ML Persistence”

Spark ML 54

Enabling Interactive (Big) Data Science with
SparkR

Spark early adopters

®

Data Engineers

Users . :
Data Scientists
Understands Statisticians
MapReduce

: R users
& functional APIs PyData ..
Fast! Statistical!
Scalable Spqﬂ(z + @ Packages
Flexible Interactive

Spark ML 55

SparkR — R package for Spark

= R Interface support via SparkR (R with RDD = R2D2) é_jﬂ |
since Spark 1.4 (released since June 2015) ‘E 7
= Exposes DataFrames and MLIib in R: & Iy

df = jsonFile(“tweets.json”)

summarize(

group_by (
df [dffuser == “matei”,],

“date”),
sum(“retweets”))

Spark ML 56

SparkR — R package for Spark
RDD - distributed lists

SparkR Run R on clusters

Re-use existing packages

Combine scalability & utility

Spark ML 57

Getting closer to Idiomatic R

Q: How can | use a loop to [...insert task
here| 2

A: Don’t. Use one of the apply functions.

From: http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

Spark ML 58

SparkR

R + RDD =
RRDD

&

lapply
lapplyPartition
groupByKey
reduceByKey
sampleRDD

@ collect

Wi cache
Mg

N=1e

' 4

broadcast
includePackage
textFile
parallelize

Spark ML 59

Example: Word Counting with SparkR

lines <- textFile(sc, "hdfs://my text file")

words <- flatMap(lines,
function(line) {
strsplit(line, " ")[[1]]
})
wordCount <- lapply(words,
function(word) {
list(word, 1L)
1)
counts <- reduceByKey(wordCount, "+", 2L)

output <- collect(counts)
Spark ML 60

Example: Logistic Regression with SparkR

pointsRDD <- textFile(sc, "hdfs://myfile")
weights <- runif(n=D, min = -1, max = 1)

Logistic gradient
gradient <- function(partition) {
X <- partition[,1]; Y <- partition[,-1]

t(X) %*% (1/(1 + exp(-Y * (X %*% weights))) - 1) * Y

}

Iterate
weights <- weights - reduce(

lapplyPartition(pointsRDD, gradient), "+")

Spark ML 61

SparkR Implementation

= Very similar to PySpark

= Relatively easy to extend Spark

s 329 lines of Scala code
= 2079 lines of R code
s 693 lines of Test code in R

Spark ML 62

Spark: A Recap and Future Directions

Spark ML 63

Powerful Stack — Agile Development

140000

120000 - L
Your Application

here
A

100000 -

80000 -

60000 T _» GraphX

40000 - parkSQL
N .
Streaming

20000 -

O -

Hadoop Storm Impala (SQL) Giraph Spark
MapReduce (Streaming) (Graph)

non-test, non-example source lines

Spark/ BDAS Timeline till v2.0

research Spark 1.0 & libraries
paper (SQL, ML, GraphX) Spark 2.0

Databricks !
started started s
@ & donated ?tangratmes
ungsten
to ASF
ekl ML Pipelines

Spark Part II 65

Major Features in Spark 2.0

&\ © o

Tungsten Phase 2 Structured Streaming Unifying Datasets
speedups of 5-10x real-time engine and DataFrames
on SQL/DataFrames

Spark Part I 66

Boosting Spark Performance via
Project Tungsten

Goal

To Overcome JVM Performance limitations and bring Spark
performance closer to Bare Metal via:

=Native Memory Management and Binary Processing: leveraging
application semantics to manage memory explicitly and eliminate
the overhead of JVM object model and garbage collection

sCache-aware computation: algorithms and data structures to
exploit memory hierarchy

=Runtime Code generation: using code generation to exploit
modern compilers and CPUs

Spark Part II 67

Project Tungsten: Key areas of Optimization

Data

: Code Generation
representations

Inspired by traditional database systems

Broadcasting

Aggregation and Shuffling

Spark Part IT 68

Optimized Data Representations

= Java Objects have two downsides:
= Space overheads
= Garbage collection overheads

= Tungsten sidesteps these problems by performing its
own manual memory management

Spark Part II 69

Further Performance Optimization via
Project Tungsten

Python Java/Scala SQL
Q
DataFrame
Logical Plan

JVM

Spark Part IT 70

Phased introduction of Tungsten

In Spark 1.4-1.6

sAdded Binary Storage and Basic Code Generation
sDataFrame + Dataset APIs enable Tungsten in User Programs
sTungsten also being used under SparkSQL + parts of MLIib

By Spark 2.0
sWhole-stage Code Generation Spark 16 |l gjvhs"/s
= Remove expensive Iterator calls
= Fuse across multiple operators
m\/ector Processing

= Optimized Input/Output Parquet 11M

125M

Spark 2.0
P rows/s

1y . in 1.6
= Parquest + Built-in Cache " rows/s
Parquet 90M
in 2.0 rows/s

Automatically applies to SQL, DataFrames, Datasets

Spark Part IT 71

Spark Ver. 2.0 Stack (circa 2015)
DataFrame + Tungsten

: Advanced
Syl Analytics

DataFrame (& Dataset)

Tungsten Execution

Spark Part I 72

Evolution Timeline of Spark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matet Zaharia. Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Sp a rk l O & l| b ra n‘ es

Murpiry McCauley, Michael J. Frenkfin, Scott Shenker, Jon Stoica

Usivercyof G, Beeley |SQL, ML, Gra D hXI Apache Spark 20 2122
Structured Streaming
Cost Based Optimizer

Deep Learning Pipelines

Easier
g Nulelgls
* Faster

2015

2016-17

Databricks

started |
Started & donated DataFrames/Datasets

@ to ASF Tungsten
UC Berkeley Catalyst Optimizer
ML Pipelines

Spark Part IT 73

Spark 1.6 vs. Spark 2.x

Spark 1.6.x

Spark SQL /

DtaE e MLIib (DF based)

Legend:
Optimized
libraries
- Spark 2.x.x
Spark SQL /
DataFrames / MLlib (DF based) 2:::::’ GraphFrames
Datasets g
Legend:
Optimized
libraries

Foundational Spark 2.x Components

Structured

ML Pipelines Streaming

GraphFrames

SQL DataFrame/Dataset
Spark SQL
Catalyst

Spark Core (RDD)

cass'andra
elasticsearch.
and more...

Spark Part II 75

Long Term Role of
RDD, DataFrames & DataSets on Spark

= RDD as the low-level APl in Spark

= For control and certain type-safety in Java/ Scala

= Datasets & DataFrames give richer semantics &
optimizations
= For semi-structured data and DSL like operations

= New libraries will increasingly use these as interchange
format

= Examples: Structured Streaming, MLib, GraphFrames,

and Deep Learning Pipelines &

Spark Part II 76

SparkSession subsumes SparkContext

s Starting v2.0, SparkSession becomes the unified entry point,
l.e. a Conduit, to Spark
= Create Datasets/ DataFrames
= Read/Write Data
= Work with metadata
= Set/Get Spark Configuration
= Driver uses for Cluster Resource Management

SparkSession vs.

Spa rkContext Worker Node SparkSessions Subsumes
« SparkContext
i « SQLContext
- « HiveContext
i I Lo ” L I « StreamingContext

« SparkConf
SparkContext Cluster Manager Er

/
Worker Node
\ Executor @v

| Task || Task |

warehouselocation =

spark = SparkSession
.builder()

.appName ()
.config(warehouselLocation)
.enableHiveSupport()

.getOrCreate() park Part II 77

Major Features in Spark 2.0

@

Structured Streaming
real-time engine
on SQL/DataFrames

=

Unifying Datasets
and DataFrames

Tungsten Phase 2
speedups of 5-10x

Spark Part IT 78

Major Features since Spark 2.2

<

l: — DL__] = ?/C” :
) BF 38 % & [

Continuous Data Spark on PySpark ML on History
Processing Source Kubernetes Performance Streaming Server V2
API V2
% b " e *
e =21 Z &7 o SQL
Stream-stream UDF Image Native ORC Stable Various SQL
Join Enhancements Reader Support Codegen Features

Spark Part IT 79

Key Features in Apache Spark 2.3 & 2.4

Apache Spark 2.3.0

Data Source APl V2

Native Vectorized ORC Reader
Pandas UDFs for PySpark
Continuous Stream Processing

Apache Spark and Kubernetes

See also What'’s new in Apache Spark 2.3 by Xiao Li and
Wenchen Fan

Apache Spark 2.4.0

Barrier Execution

Pandas UDFs: Grouped Aggregate
Avro/Image Data Source
Higher-order Functions

Apache Spark and Kubernetes

See also What’s new in Upcoming Apache Spark 2.4 by
Xiao Li

Spark Part IT 80

Summary of
Key Efforts in Spark 2.X (ver2.4 circa Nov 2018)

= Structured Streaming
= Unification of the APIs
= Event-time Aggregations/ Processing to handle out-of-order/late data
= Other Streaming sources/sinks
= Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames

= Support of Continuous Processing model, i.e. true (low-latency) streaming
instead of stream processing via micro-batching.

= Spark over Kubernetes: deploying Spark not only as a framework but also as a
containerized distributed application/ library !

= Machine Learning — Optimized Model Tuning
= lteration as a First-Class concept in DataFrames
= Cost-based Query Optimization for ML/Graph Algorithms
=« Caching, Communication, Serialization, Compression
= Spark + GPUs
= High-level API for Deep-Learning Pipeline in Spark MLIib
= Built on TensorFlow, Keras, BigDL
= Project Hydrogen - enhancing Integration of other ML frameworks with Spark
= Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow

More Details on some
Key Features since Spark 2.2

<

I H ”| — =) o -
Eg[ilgg i%%% EQ L\%%{Fm

Continuous Data Spark on PySpark ML on
Processing Source Kubernetes Performance Streaming
API V2
°_°a b %T =
EE 5 = 3 '03 }ﬁm
Stream-stream UDF Image Native ORC Stable
Join Enhancements Reader Support Codegen

=

History
Server V2

*
SQL

Various SQL
Features

Spark Part II 82

Continuous (Stream) Processing

= A new execution mode introduced since V2.2 that
allows fully pipelined execution (like Flink)
= Streaming execution without micro-batches
= Support asynchronous checkpoints and ~1msec latency
=> To enable Spark to stay competitive with Flink
= No changes required for user codes.

= Still WIP, not all features are supported as of Mar
2019.

= See initial proposal at:

= https://issues.apache.org/jira/browse/SPARK-20928

Spark Part II 83

Continuous (Stream) Processing (cont'd)

Structured Streaming

DataFrame or SQL Query
data.where($“state” === “CA")
.groupBy(window($“time”, “30s”))
‘ .avg(“latency™)
Input Streams
1100 4 Structured Streaming
OCI000] .g’ _ Microbatch Output Sink
© O / Execution
= N
o I E -
Spark Tables = 4
o o
| 5
£

i

Log State Store

I1 84

Continuous (Stream) Processing (cont'd)

Micro Batch Execution

’,
’
g— .
&7 [
'
s’
>
(&

to-be-processed offsets
saved to a write-ahead-log
before starting micro-batch

[Spark driver }---czz:;c--;;:: ________

. _tasksin every micro-batch

\
\
\
\

1
1
u_ short tasks

RVl

driver launches short

“~.___to process events

A
\
\

1
|
u_ short tasks

L

S

b
\
\

]
1
u_ short tasks

input event
stream

micro-batch

micro-batch

Is

N S e L L

micro-batch ' >

Latency > 100ms Exactly-once Semantics

Spark Part II 85

Continuous (Stream) Processing (cont'd)

Micro Batch Execution

micro-batch boundaries
(interval of seconds)

time when eventsare o @ e @ @ @ P
available at source : ;
i 'y [: ' i
time wheq process.ed PAAS PAASS paS44
events are written to sink ' ‘ ' :
second-scale
end-to-end
latencies

See also Continuous Processing in Structured Streaming by Josh Torres

Spark Part IT 86

Continuous (Stream) Processing (cont'd)

DataFrame or SQL Query
data.where($“state” === “CA")
.groupBy(window($“time”, “30s”))
r .avg(“Tlatency”)
Input Streams
- -l. & Structured Streaming
INIE 8| | | Microbatch Output Sink
© @ Execution
C 4 é -
Spark Tables QEJ o ,
- @ '®) Continuous
)= Processing
 Ca =2 .
An experimental
) Ej execution mode
Log State Store

Spark Part IT 87

Continuous (Stream) Processing (cont'd)

driver launches long-
Sparkdriver - running tasks at the
" start of the query tasks process evgnts as soon as
! they are available at source

= i
long running tasks continuously processing events

inputevent oo T AT T
stream :iiiepoch::: ',4 iigpogh:: 9 :epoch::: 9>
processed offsets saved ‘
to a write-ahead-log after e
every epoch & s
Latency ~1Tms At-least once Semantics

Spark Part IT 88

Continuous (Stream) Processing (cont'd)

Structured Streaming: Continuous Processing

time when events are @ ® o @ ™ © @
available at source :

long running Spark tasks
continuously processing events

time when processed

events are written to = >4 ’ = = 1 g
. ms-scale
sink ™ andl d
end-to-en epoch markers for
latencies checkpointing progress

See also Continuous Processing in Structured Streaming by Josh Torres

Spark Part II 89

Continuous (Stream) Processing (cont'd)

spark

. readStream

.format(source = "kafka")

.option("kafka.bootstrap.servers”, "hostl:portl,host2:port2")
.option("subscribe", "topicl")

. Lload()

.selectExpr(exprs = "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream

. format(source = "kafka")

.option("kafka.bootstrap.servers”, "hostl:portl,host2:port2")
.option("topic", "topicl")

.trigger(Trigger.Continuous(interval = "1 second")) // only change in query |

.Startl)

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#continuous-processing

See also Spark Summit Keynote Demo by Michael Armbrust

Spark Part IT 90

Continuous (Stream) Processing (cont'd)

Supported Operations Supported Sources
» Kafka Source

* Map-like Dataset Operations
* Rate Source

— Projections

— Selections Supported Sinks
* All SQL functions Kafka Sink

— Except current_timestamp(), « Memory Sink

current date() and

: : * Console Sink
aggregation functions

Blog: https;//tinyurl.com/spark-cp

Spark Part IT 91

Major Features since Spark 2.2

<

l: — DL__] = ?/C” :
) BF 38 % & [

Continuous Data Spark on PySpark ML on History
Processing Source Kubernetes Performance Streaming Server V2
APl V2

< S h : *
2= F ' &7) SO
tream-stream UDF Image Native ORC Stable Various SQL
Join Enhancements Reader Support Codegen Features

Spark Part IT 92

Stream to Stream Joins (in V2.3)

> (adld, impressionTime)>

Stream-stream
Join

buffered
Impressions

join

(adld, impressionTime, clickTime)

> (adld, clickTime) >

buffered
clicks

See also Introducing Stream-Stream Joins in Apache Spark 2.3 by Tathagata Das and Joseph Torres

Spark Part I 93

)

Continuous
Processing

(V1)

Stream-stream
Join

— 0]
SS 55
=] D

Data
Source
APl V2

K

UDF

Enhancements

Spark on
Kubernetes

Image
Reader

Major Features since Spark 2.2

L} S :
& [S\ [Ba
PySpark ML on History
Performance Streaming Server V2
[—] .
&7 I x] SQL
Native ORC Stable Various SQL
Support Codegen Features

Spark Part IT 94

ML on Streaming ML'
on

Streaming

= ML model transformation/ prediction on Batch and
Streaming data with Unified API

= After fitting a ML model or ML Pipeline, user can
deploy it in a Streaming job

m val streamOutput = transformer.transform(streamDF)

Spark Part II 95

)

Continuous
Processing

(V1)

Stream-stream
Join

Major Features since Spark 2.2

Data
Source
APl V2

Kl

UDF
Enhancements

Spark on
Kubernetes

Image
Reader

[Do ;
Crm
PySpark
Performance

Native ORC
Support

&%’CF&J

ML on
Streaming

I x]

Stable
Codegen

=

History
Server V2

*
SQL

Various SQL
Features

Spark Part IT 96

Apache Spark on Kubernetes
Spark SQL + Structured :
-
kubernetes

apiserver

scheduler

Client

See also: https://spark.apache.org/docs/2.3.2/running-on-kubernetes.html Spark Part II 97

Apache Spark on Kubernetes (cont’'d)

= Driver runs in a Kubernetes pod created by the
submission client and creates pods that run the
executors in response to requests from the Spark
Scheduler

= Make direct use of Kubernetes clusters for Multi-
tenancy and sharing through Namespaces and
Quotas, as well as administrative features such as
Pluggable Authorization and Logging.

Spark Part IT 98

Apache Spark 2.3.0

Apache Spark and Kubernetes (cont'd)

Supports Kubernetes 1.6 and up .
Supports cluster mode only .
Static resource allocation only

Supports Java and Scala applications

Can use container-local and remote
dependencies that are downloadable

Apache Spark 2.4.0 (Roadmap)

Client mode

Dynamic resource allocation + external
shuffle service

Python and R support

Submission client local dependencies +
Resource staging server (RSS)

Non-secured and Kerberized HDFS
access (injection of Hadoop
configuration)

Blog: https://tinyurl.com/spark-k8s

Spark Part IT 99

Better Support ML/ Al in Production
with MLflow

Spark Part IT 100

Hidden Technical Debt in Machine Learning Systems

(A NIPS 2015 paper from Google)

Configuration

Data Collection

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Spark Part II 101

MLflow
Goal of MLflow:

= To provide the tools to simplify the ML lifecycle (in an industrial
production-grade environment)

= A Lightweight, open platform that integrates with other ML systems
readily

Available APIs: Python, Java and R
Develop model locally and track runs locally or remotely
Deploy locally, cloud or on premise
Visualize experiments
Components of MLflow:

ml7/c ml7/c

Record and query Packaging format General model format
experiments: code, for reproducible that supports diverse
configs, results, runs deploymenttools

...etc on any platform

Model Development without MLflow

data load_text() .1: accuracy=0.
ngrams extract_ngrams(data, .2: accuracy=0.
model train_model(ngrams, .5: accuracy=0.
) .9: accuracy=0.

score compute_accuracy(model) .1: accuracy=0.
: accuracy=0.

print(* ' % - n=4, .5: accuracy=0.

% (n, 1lr, score))

pickle.dump(model, open(What version of

my code was this
result from?

Spark Part II 103

Key Concepts in Tracking with MLflow

Parameters: Key-value inputs to your code
Metrics: numeric values (can update over time)
Tags and Notes: information about a run
Artifacts: files, data and models

Source: what code was run ?

Version: Which version of the code ?

Spark Part II 104

MLflow Tracking API

mlflow

ml

log model’s tuning parameters

with mlflow.start_run():
mlflow.log_param("layers", layers)
mlflow.log _param("alpha”, alpha)

Record and query

experiments: Code, i log model’s metrics
confios. results mlflow.log metric("mse", model.mse())
85 : mlflow.log_artifact("plot", model.plot(test_df))

..etc mlflow.tensorflow.log model(model)

Spark Part IT 105

Model Development with MLflow

data load_text(file)
ngrams = extract_ngrams(data, N=n
model train_model(ngrams,

aar ~ate=1r)

compute_accu;acy(model)

Track parameters, metrics,
output files & code version

Search using Ul or API

= Data Scientist/ Model developer can track, inspect and
compare the results of the running of different models/

parameters via the MLflow Ul
Spark Part II 106

MLflow Tracking

| Python,
Notebooks Java, R or
— \ REST API

@7.

Local Apps

y -
Cloud Jobs @ $ export MLFLOW TRACKING URI <URI>
(

mlflow.set tracking uri(URI)

Spark Part II 107

Model Deployment without MLflow

DATA & " % PRODUCTION

AT
SCIENTIST 4) /Vd/ ENGINEER
4, Code & Models m

Please deploy this
ArXiv paper!

Spark Part II 108

Packaging Code: MLflow Projects

Y P— A O
T i {2
(] @ e}

Code Deps Config g Remote Cluster %

databricks &

Spark Part IT 109

Example MLflow Project

my project/
Ml_pr‘oj ect conda_env: conda.yaml

entry points:
main:
parameters:
training_data: path
lambda: {type: float, default: 0.1}
command: python main.py {training_data} {lambda}

conda.yaml
main.py
model.py

Spark Part IT 110

Packaging Models: MLflow Models

TensorFlow @ ‘.

Inference Code

Spark

Batch & Stream Scoring

& ONNX Flavor \\
S Azure
Machine Learning

-

| Python Flavor

Standard for ML models
ML Frameworks Serving Tools &

B

Spark Part IT 111

1%

Example MLflow Model

model/

MLmodel run_id: 769915006efd4c4bbd662461
time_created: 2018-06-28T12:34
flavors:

tensorflow:
saved_model _dir: estimator
signature_def_key: predict
python_function:
loader_module: mlflow.tensorflow

estimator/
P—— saved model.pb
- variables/

Usable by tools that understand
TensorFlow model format

Usable by any tool that can run
Python (Docker, Spark, etc!)

Spark Part IT 112

Model Deployment with MLflow

AN | @ PRODUCTION
SCIENTIST | , ,v“/ ENGINEER

Please run this Don’t even tell me
MLflow Project what ArXiv paper
nightly for updates! that’s from...

Spark Part II 113

Ongoing MLflow Roadmap (circa Jan 2019)

Tensorflow, Keras, PyTorch, H20, MLleap, MLlIib
iIntegrations

Java and R MLflow Client language APlIs
Multi-step Workflows

Hyperparameter Tuning

Integration with Databricks Tracking Server
Support for Data Store (e.g. MySQL)
Stablize MLflow APls 1.0

Model metadata, management and registry
Hosted MLflow

Just released v8.0.1
Faster & Improved Ul
Extended Python Model
as Spark UDF

Persist model
dependencies as Conda
Environment

Project Hydrogen:
Better Integration of other ML/ Al frameworks
with Spark

Spark Part IT 115

Two Challenges in supporting
ML frameworks in Spark

D @

Data exchange: Execution model:
need to push data in high fundamental incompatibility between
throughput between Spark and Spark (embarrassingly parallel) vs ML
ML frameworks frameworks (gang scheduled)

Spark Part II 116

User Defined Functions (UDFs)

= UDFs allow the execution of arbitrary code ; often
used for integration with ML frameworks

= €.g., Prediction on data using Tensorflow

= But Exchanging data with UDFs only is carried out
only One-Row-at-a-Time => Waste CPU cycles

P e e e e O e e S e 1 e e

i Spark i
T FishnY 4.1 7 . 2 john 4.1
B |
2 mike 35 ; i
]
: i
3 sally 64 z i
il il
il il
il il
il il
| R W ———— Ryiy——
r --'---- =7 £33 e Y e e 1 e o -=
i
i

| UDF (x+1)
NSO N 11 117

Introducing “Vectorized Data Exchange”
= UDFs run 3x to 240x faster !

ﬁ

jei==j==l==jemjenl=mf=lam} tjemjomi=mjempemleni=mj=ngon]a—-]
L---- s o o e e e e e e

p
3
4

. [S— —

r
o
i UDF (x+1)
L

Spark Part IT 118

Execution Models

Spark
Tasks are independent of each other

Embarrassingly parallel & massively scalable

Distributed ML Frameworks

Complete coordination among tasks

Optimized for communication

Task 1

Task 2
Task 3

O

O

A 4

O

Task 1

w

Task 2

Task 3

Spark Part IT 119

What if a Task Crashes ?

Spark
Tasks are independent of each other

Embarrassingly parallel & massively scalable

If a task crashes, rerun that one

Distributed ML Frameworks

Complete coordination among tasks
Optimized for communication

If a task crashes, must rerun all tasks

=> |ncompatible Execution

Task 1 O

Task 2 O
Task 3 B,

Task 1

Task 2

models |

Task 3

Spark Part II 120

Unifying Execution Models with
Barriers Execution (aka Gang Execution)

Stage 1 Stage 2 Stage 3
data prep distributed ML training data sink
embarrassingly parallel gang scheduled embarrassingly parallel

e e B B 3
| K b | 1 O ' i
I | I | : :
e - — O 4
| | ! I :
O S e e
| | I I :
I | I I |

———————————— ————————————— — B - —————————————————— —— —— ——————————————— —————— ——————

tasks “all or nothing”
to reconcile fundamental incompatibility
between Spark and distributed ML frameworks

Spark Part II 121

Roadmap to support
Barrier Execution (aka Gang Execution)

Apache Spark 2.4
* [SPARK-24374] barrier execution mode

Apache Spark 3.0

* [SPARK-24374] barrier execution mode
* [SPARK-24579] optimized data exchange

* [SPARK-24615] accelerator-aware scheduling

See also Project Hydrogen: Unifying State-of-the-art Al and Big Data in Apache Spark by Reynold Xin
See also Project Hydrogen: State-of-the-Art Deep Learning on Apache Spark by Xiangrui Meng
Spark rart 11 122

Project Hydrogen

10 to 100X Faster Unify Spark + ML
Data Exchange Execution Model
Timeline

= Spark 2.3 (Spring 2018): Basic Vectorized UDFs

s Spark 2.4 (Fall 2018): Barrier Scheduler and more
Vectorized UDFs support

= Spark 3.0 (2019): General Avalilability (GA) and
standard format for data

See also . by Reynold Xin
See also : by Xiangrui Meng 123

Summary of
Key Efforts in Spark 2.X (ver2.4 circa Nov 2018)

= Structured Streaming
= Unification of the APIs
= Event-time Aggregations/ Processing to handle out-of-order/late data
= Other Streaming sources/sinks
= Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames

= Support of Continuous Processing model, i.e. true (low-latency) streaming
instead of stream processing via micro-batching.

= Spark over Kubernetes: deploying Spark not only as a framework but also as a
containerized distributed application/ library !

= Machine Learning — Optimized Model Tuning
= lteration as a First-Class concept in DataFrames
= Cost-based Query Optimization for ML/Graph Algorithms
=« Caching, Communication, Serialization, Compression
= Spark + GPUs
= High-level API for Deep-Learning Pipeline in Spark MLIib
= Built on TensorFlow, Keras, BigDL
= Project Hydrogen - enhancing Integration of other ML frameworks with Spark
= Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow

Summary of
Key New Features in Spark 2.4.x
(part of Databricks Runtime 5.2 ML)
(circa Jan 2019)

Using HorovodRunner for Distributed Deep Learning Training
= Integrating Horovod with Spark’s Barrier mode
=« Simplified workflow for multi-GPU machines

https://docs.databricks.com/applications/machine-learning/train-model/distributed-
fraining/horovod-runner.himl

https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

GraphFrames to add a Pregel-like API

Enhance Databricks Runtime support for TensorBoard (visualization toolkit for
Tensorflow)

Speed-up Cluster start-time when Pytorch is included.

https://databricks.com/blo hg¥/2019/01/3O/databr|<:ks -runtime-5-2-ml-features-multi-gpu-workflow-pregel-api-

and-performant-graphirames.html

https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

Summary of
Key New Features in Spark 3.0
(part of Databricks Runtime 7.0)
(circa June 2020)

= ANSI SQL Compliance

= 2Xx performance improvement on TPC-DS (SQL benchmark) over

Spark 2.4 by Adaptive Query execution, Dynamic Partition Pruning
and other optimizations.

= New Ul for Structured Streaming

= Improvements in Pandas APls

= Better Python error Handling

= Speed-up in calling R UDF (upto 40x)

https://databricks.com/blog/2020/06/18/introducing-apache-spark-3-0-now-
available-in-databricks-runtime-7-0.html

Spark Part II 126

Summary of
Key New Features in Spark 3.1
(part of Databricks Runtime 8.0)
(circa March 2021)

ANSI SQL Compliance

More Query Optimization

Shuffle Hash Join improvements

History Server support of Structured Streaming

Project Zen has been initiated to:

= Provide Better Interoperability with other Python libraries
= Improve PySpark’s Usability

https://databricks.com/blog/2021/03/02/introducing-apache-spark-3-1.html

Spark Part II 127

Summary of
Key New Features in Spark 3.2
(part of Databricks Runtime 10.0)
(circa Oct 2021)

Pandas API layer on PySpark — (from Project Zen)
= Also provide Interactive Data visualization

ANSI SQL Compliance - ANSI Mode GA

Productionize Adaptive Query Execution to speedup Spark SQL at runtime
Introduce RockDB State-store to enable scalable state processing
Event-time based Session Window support

Support push-based Shuffle

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html

https://spark.apache.org/releases/spark-release-3-2-0.html

https://spark.apache.org/third-party-projects.html

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html
https://spark.apache.org/releases/spark-release-3-2-0.html
https://spark.apache.org/third-party-projects.html

