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About Spark for MLlib
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About Apache Spark MLlib
Started at Berkeley AMPLab

(Apache Spark 0.8)

By Apache Spark 2.1 (circa Apr 2017)
•Contributions from 75+ orgs, ~250 individuals
•Development driven by Databricks: roadmap 
+ 50% of PRs
•Growing coverage of distributed algorithms
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MLlib Goals

General Machine Learning library for big data
• Scalable & robust
• Coverage of common algorithms
• Leverages Apache Spark

Tools for practical workflows

Integration with existing data science tools
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Apache Spark MLlib

• spark.mllib
• Pre MLlib < Spark 1.4
• Spark mllib was a 

lower level library that 
used Spark RDDs
• Use LabeledPoint, 

Vectors and Tuples
• Maintenance Mode 

only after Spark 2.X

// Load and parse the data

val data = sc.textFile("data/mllib/ridge-data/lpsa.data")

val parsedData = data.map { line =>

val parts = line.split(',')

LabeledPoint(parts(0).toDouble, Vectors.dense(parts(
1).split(' ').map(_.toDouble)))

}.cache()

// Building the model

val numIterations = 100

val stepSize = 0.00000001

val model = LinearRegressionWithSGD.train(parsedDa
ta, numIterations, stepSize)

// Evaluate model on training examples and compute 
training error

val valuesAndPreds = parsedData.map { point =>

val prediction = model.predict(point.features)

(point.label, prediction)

}
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Gradient Descent
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k-means (scala)
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k-means (python)
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Dimension Reduction + k-means
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Collaborative Filtering 
via Alternating Least Square (ALS) method
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Combine Machine Learning with Streaming

§Learn models offline, apply them online
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Spark Streaming + MLlib
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Streaming MLlib Algorithms
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Spark SQL + MLlib



Spark ML 16

Spark SQL and MLlib
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GraphX + MLlib
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Evolution of the  Apache Spark MLlib

n Started with Spark 0.8 in AMPLab in 2014 with RDD-based API.
n Migration to Spark DataFrames (aka spark.ml) since v1.3 and aims to 

achieve feature-parity by v2.3.
n RDD-based MLlib API entered maintenance mode (i.e. no new features 

added) since v2.0 ; expected to be removed by v3.0.
n Contributions by 75+ orgs, ~250 individuals.
n Distributed algorithms that scale linearly with the data.
n In 2018, the MLflow platform (mlflow.spark) emerged to provide API for 

logging & loading MLlib models to enhance the complete ML lifecycle.
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Machine Learning Support for Spark
(via MLlib or spark.ml)
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Machine Learning Support for Spark
(via MLlib or spark.ml) 

nClassification
n Logistic regression
n Naive Bayes
n Streaming logistic regression
n Linear SVMs
n Decision trees
n Random forests
n Gradient-boosted trees
n Multilayer perceptron

nRegression
n Ordinary least squares
n Ridge regression
n Lasso
n Isotonic regression
n Decision trees
n Random forests
n Gradient-boosted trees
n Streaming linear methods
n Generalized Linear Models

nFrequent itemsets
n FP-growth
n PrefixSpan

Clustering
•Gaussian mixture models
•K-Means
•Streaming K-Means
•Latent Dirichlet Allocation
•Power Iteration Clustering
•Bisecting K-Means

Statistics
•Pearson correlation
•Spearman correlation
•Online summarization
•Chi-squared test
•Kernel density estimation
•Kolmogorov–Smirnov test
•Online hypothesis testing
•Survival analysis

Linear algebra
•Local dense & sparse vectors & matrices
•Normal equation for least squares
•Distributed matrices

• Block-partitioned matrix
• Row matrix
• Indexed row matrix
• Coordinate matrix

•Matrix decompositions

Recommendation
•Alternating Least Squares

Feature extraction & 
selection
•Word2Vec
•Chi-Squared selection
•Hashing term frequency
•Inverse document frequency
•Normalizer
•Standard scaler
•Tokenizer
•One-Hot Encoder
•StringIndexer
•VectorIndexer
•VectorAssembler
•Binarizer
•Bucketizer
•ElementwiseProduct
•PolynomialExpansion
•Quantile discretizer
•SQL transformer

Model import/export
Pipelines

List based on Spark 2.0
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An Ideal ML Workflow

Set Business 
Goals

Understand 
Your Data

Create 
Hypothesis

Devise 
Experiment

Prepare Data

Train-Tune-Test 
Model

Deploy Model

Measure / 
Evaluate 
Results
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But Real-World ML workflows are complex

n Specify the pipeline
n Re-run on new data
n Inspect the results
n Tune the parameters

n Usually, each step of a pipeline is easier 
with one framework
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Real-world ML Workflows (Pipelines)
are Complex

23

Train model 1

Evaluate

Datasource 1
Datasource 2

Datasource 3

Extract featuresExtract features

Feature transform 1

Feature transform 2

Feature transform 3

Train model 2

Ensemble
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Example: Text Classification
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Training & Testing
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Example ML Workflow
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Example ML Workflow
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Example ML Workflow
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Example ML Workflow
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Recap the Pain Points 
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Apache Spark – ML Pipelines

• spark.ml
• Spark > 1.4
• Spark.ML 

pipelines – able 
to create more 
complex models
• Integrated with 

DataFrames

// Let's initialize our linear 
regression learner
val lr = new LinearRegression()

// Now we set the parameters for the 
method
lr.setPredictionCol("Predicted_PE")  
.setLabelCol("PE").setMaxIter(100).setRe
gParam(0.1)

// We will use the new spark.ml pipeline 
API. If you have worked with scikit-
learn this will be very familiar.

val lrPipeline = new Pipeline()
lrPipeline.setStages(Array(vectorizer, 
lr))

// Let's first train on the entire 
dataset to see what we get
val lrModel = 
lrPipeline.fit(trainingSet)
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Key Concepts of ML Pipeline in Spark

n DataFrames: Provide a Unified API to hold the ML Dataset
n Structured Data with Flexible Types
n Add & Remove Columns during ML Pipeline execution
n Distributed, Optimized Implementation

n The notion of Pipeline in Spark MLlib
n To support Simple construction and Tuning of Machine 

Learning Workflows
n Abstractions for ML Pipeline: 

n Transformers, Estimators and Evaluators
n Parameters: API & Tuning
n ML Pipeline API similar to scikit-learn



Spark ML 33

Use a DataFrame to hold the ML dataset 
under processing
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Extract Features



Spark ML 35

Fit a Model
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Evaluate Performance
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Key Concepts in ML Pipeline in Spark
n Transformer: 

n An algorithm which can transform one Dataframe into another 
Dataframe.

Example: ML model is a Transformer which transforms a DataFrame with 
features into a DataFrame with predictions

n Estimator:
n An algorithm which can be fitted on a DataFrame to produce a 

Transformer.
Example: A learning algorithm is an Estimator which trains on a 

Dataframe and produces a model (i.e. a Transformer)
n Pipeline:

n A sequence of PipelineStages (i.e. a chain of Transformers and 
Estimators) to be run in a specific order to realize a ML workflow. 

n Evaluator:
n A Transformer which computes a Metric to measure how well a fitted 

model does on held-out test data
n Parameters: API & Tuning
References: 
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-mllib/spark-mllib-evaluators.html
https://spark.apache.org/docs/latest/ml-pipeline.html#parameters
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More details on Pipeline Components
Transformers
nA Transformer is an abstraction that includes feature transformers and learned models. Technically, a 
Transformer implements a method transform(), which converts one DataFrame into another, generally by 
appending one or more columns. For example:
nA feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g., 
feature vectors), and output a new DataFrame with the mapped column appended.
nA learning model might take a DataFrame, read the column containing feature vectors, predict the label for 
each feature vector, and output a new DataFrame with predicted labels appended as a column.

Estimators
nAn Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on data. 
Technically, an Estimator implements a method fit(), which accepts a DataFrame and produces a Model, which 
is a Transformer. For example, a learning algorithm such as LogisticRegression is an Estimator, and calling fit() 
trains a LogisticRegressionModel, which is a Model and hence a Transformer.
nA Predictor is a specialization of Estimator for a PredictionModel with its own abstract train method()

Evaluators
nAn Evaluator is a transformer that maps a Dataframe into a metric showing how good a model is.

Params and ParamMap: 
nMLlib Estimators and Transformers use an uniform API for specifying parameters
nA Param is a named parameter with self-contained doc ; A ParamMap is a set of (parameter, value) pairs
nTwo main ways to pass parameters to an algorithm:

n Set parameters for an instance. E.g., if lr is an instance of LogisticRegression, one could call lr.setMaxIter(10) to make 
lr.fit() use at most 10 iterations. This API resembles the API used in spark.mllib package.

n Pass a ParamMap to fit() or transform(). Any parameters in the ParamMap will override parameters previously specified 
via setter methods.
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Load Data
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Load Data
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Training Workflow
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Abstraction: Transformer
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Abstraction: Estimator
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Abstraction: Evaluator
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Abstraction: Model
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(Recall) Abstraction: Estimator
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Abstraction: Pipeline
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Abstraction: PipelineModel
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Summary of Abstractions
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A Pipeline Example
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Parameters
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Parameter Tuning
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Sample Code for an ML Pipeline
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Summary of Spark ML Pipelines

n Also Support Models Import and Export via “ML Persistence”
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Enabling Interactive (Big) Data Science with 
SparkR
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SparkR – R package for Spark

n R Interface support via SparkR (R with RDD = R2D2) 
since Spark 1.4 (released since June 2015)
n Exposes DataFrames and MLlib in R:
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SparkR – R package for Spark
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Getting closer to Idiomatic R
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SparkR
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Example: Word Counting with SparkR
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Example: Logistic Regression with SparkR
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SparkR Implementation

n Very similar to PySpark
n Relatively easy to extend Spark

n 329 lines of Scala code
n 2079 lines of R code
n 693 lines of Test code in R
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Spark: A Recap and Future Directions



Powerful Stack – Agile Development

non-test, non-example source lines

GraphX

Streaming
SparkSQL

Your Application
here
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Spark/ BDAS Timeline till v2.0
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Major Features in Spark 2.0
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Boosting Spark Performance via
Project Tungsten

Goal
To Overcome JVM Performance limitations and bring Spark 
performance closer to Bare Metal via:

nNative Memory Management and Binary Processing: leveraging 
application semantics to manage memory explicitly and eliminate 
the overhead of JVM object model and garbage collection
nCache-aware computation: algorithms and data structures to 
exploit memory hierarchy
nRuntime Code generation: using code generation to exploit 
modern compilers and CPUs
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Project Tungsten: Key areas of Optimization
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Optimized Data Representations

n Java Objects have two downsides:
n Space overheads
n Garbage collection overheads

n Tungsten sidesteps these problems by performing its 
own manual memory management
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Further Performance Optimization via
Project Tungsten
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Phased introduction of Tungsten
In Spark 1.4-1.6 
nAdded Binary Storage and Basic Code Generation
nDataFrame + Dataset APIs enable Tungsten in User Programs
nTungsten also being used under SparkSQL + parts of MLlib

By Spark 2.0
nWhole-stage Code Generation

n Remove expensive Iterator calls
n Fuse across multiple operators

nVector Processing
n Optimized Input/Output

n Parquest + Built-in Cache
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Spark Ver. 2.0 Stack (circa 2015)
DataFrame + Tungsten
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Evolution Timeline of Spark
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Spark 1.6 vs. Spark 2.x
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Foundational Spark 2.x Components
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n RDD as the low-level API in Spark
n For control and certain type-safety in Java/ Scala

n Datasets & DataFrames give richer semantics & 
optimizations
n For semi-structured data and DSL like operations
n New libraries will increasingly use these as interchange 

format
n Examples: Structured Streaming, MLib, GraphFrames, 

and Deep Learning Pipelines

Long Term Role of
RDD, DataFrames & DataSets on Spark
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SparkSession subsumes SparkContext
n Starting v2.0, SparkSession becomes the unified entry point, 

i.e. a Conduit, to Spark
n Create Datasets/ DataFrames
n Read/Write Data
n Work with metadata
n Set/Get Spark Configuration
n Driver uses for Cluster Resource Management
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Major Features in Spark 2.0
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Major Features since Spark 2.2
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Key Features in Apache Spark 2.3 & 2.4
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Summary of 
Key Efforts in Spark 2.X  (ver2.4 circa Nov 2018)

n Structured Streaming
n Unification of the APIs
n Event-time Aggregations/ Processing to handle out-of-order/late data
n Other Streaming sources/sinks
n Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames
n Support of  Continuous Processing model, i.e. true (low-latency) streaming 

instead of stream processing via micro-batching.
n Spark over Kubernetes: deploying Spark not only as a framework but also as a 

containerized distributed application/ library !
n Machine Learning – Optimized Model Tuning

n Iteration as a First-Class concept in DataFrames
n Cost-based Query Optimization for ML/Graph Algorithms

n Caching, Communication, Serialization, Compression
n Spark + GPUs
n High-level API for Deep-Learning Pipeline in Spark MLlib 

n Built on TensorFlow, Keras, BigDL
n Project Hydrogen - enhancing Integration of other ML frameworks with Spark
n Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow
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More Details on some 
Key Features since Spark 2.2
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Continuous (Stream) Processing

n A new execution mode introduced since V2.2 that 
allows fully pipelined execution (like Flink)
n Streaming execution without micro-batches
n Support asynchronous checkpoints and ~1msec latency 
=> To enable Spark to stay competitive with Flink
n No changes required for user codes.

n Still WIP, not all features are supported as of Mar 
2019. 

n See initial proposal at:
n https://issues.apache.org/jira/browse/SPARK-20928



Spark Part II 84

Continuous (Stream) Processing (cont’d)

Structured Streaming
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Continuous (Stream) Processing (cont’d)

Micro Batch Execution
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Continuous (Stream) Processing (cont’d)

Micro Batch Execution
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Continuous (Stream) Processing (cont’d)



Spark Part II 88

Continuous (Stream) Processing (cont’d)
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Continuous (Stream) Processing (cont’d)
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Continuous (Stream) Processing (cont’d)
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Continuous (Stream) Processing (cont’d)
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Major Features since Spark 2.2
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Stream to Stream Joins (in V2.3)         
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Major Features since Spark 2.2
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ML on Streaming

n ML model transformation/ prediction on Batch and 
Streaming data with Unified API

n After fitting a ML model or ML Pipeline, user can 
deploy it in a Streaming job
n
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Major Features since Spark 2.2
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Apache Spark on Kubernetes

See also: https://spark.apache.org/docs/2.3.2/running-on-kubernetes.html
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Apache Spark on Kubernetes (cont’d)

n Driver runs in a Kubernetes pod created by the 
submission client and creates pods that run the 
executors in response to requests from the Spark 
Scheduler

n Make direct use of Kubernetes clusters for Multi-
tenancy and sharing through Namespaces and 
Quotas, as well as administrative features such as 
Pluggable Authorization and Logging.
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Apache Spark and Kubernetes (cont’d)
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Better Support ML/ AI in Production
with MLflow
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Hidden Technical Debt in Machine Learning Systems
(A NIPS 2015 paper from Google)
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MLflow

Components of MLflow:

Goal of MLflow: 
n To provide the tools to simplify the ML lifecycle (in an industrial 

production-grade environment) 
n A Lightweight, open platform that integrates with other ML systems 

readily
n Available APIs: Python, Java and R
n Develop model locally and track runs locally or remotely
n Deploy locally, cloud or on premise
n Visualize experiments
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Model Development without MLflow
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Key Concepts in Tracking with MLflow

n Parameters: Key-value inputs to your code
n Metrics: numeric values (can update over time)
n Tags and Notes: information about a run
n Artifacts: files, data and models
n Source: what code was run ?
n Version: Which version of the code ?
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MLflow Tracking API
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Model Development with MLflow

n Data Scientist/ Model developer can track, inspect and 
compare the results of the running of  different models/ 
parameters via the MLflow UI
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MLflow Tracking
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Model Deployment without MLflow
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Packaging Code: MLflow Projects
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Example MLflow Project
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Packaging Models: MLflow Models
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Example MLflow Model
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Model Deployment with MLflow
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Ongoing MLflow Roadmap (circa Jan 2019)
n Tensorflow, Keras, PyTorch, H2O, MLleap, MLlib 

integrations
n Java and R MLflow Client language APIs
n Multi-step Workflows
n Hyperparameter Tuning
n Integration with Databricks Tracking Server
n Support for Data Store (e.g. MySQL)
n Stablize MLflow APIs 1.0
n Model metadata, management and registry
n Hosted MLflow
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Project Hydrogen:
Better Integration of other ML/ AI frameworks 

with Spark
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Two Challenges in supporting  
ML frameworks in Spark
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User Defined Functions (UDFs)
n UDFs allow the execution of arbitrary code ; often 

used for integration with ML frameworks
n e.g., Prediction on data using Tensorflow

n But Exchanging data with UDFs only is carried out 
only One-Row-at-a-Time => Waste CPU cycles
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Introducing “Vectorized Data Exchange”
n UDFs run 3x to 240x faster !
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Execution Models
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What if a Task Crashes ?

=> Incompatible Execution models ! 
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Unifying Execution Models with 
Barriers Execution (aka Gang Execution)
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Roadmap to support
Barrier Execution (aka Gang Execution) 
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Project Hydrogen

Timeline
n Spark 2.3 (Spring 2018): Basic Vectorized UDFs
n Spark 2.4 (Fall 2018): Barrier Scheduler and more 

Vectorized UDFs support
n Spark 3.0 (2019): General Availability (GA) and 

standard format for data



Spark Part II 124

Summary of 
Key Efforts in Spark 2.X  (ver2.4 circa Nov 2018)

n Structured Streaming
n Unification of the APIs
n Event-time Aggregations/ Processing to handle out-of-order/late data
n Other Streaming sources/sinks
n Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames
n Support of  Continuous Processing model, i.e. true (low-latency) streaming 

instead of stream processing via micro-batching.
n Spark over Kubernetes: deploying Spark not only as a framework but also as a 

containerized distributed application/ library !
n Machine Learning – Optimized Model Tuning

n Iteration as a First-Class concept in DataFrames
n Cost-based Query Optimization for ML/Graph Algorithms

n Caching, Communication, Serialization, Compression
n Spark + GPUs
n High-level API for Deep-Learning Pipeline in Spark MLlib 

n Built on TensorFlow, Keras, BigDL
n Project Hydrogen - enhancing Integration of other ML frameworks with Spark
n Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow
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Summary of 
Key New Features in Spark 2.4.x

(part of Databricks Runtime 5.2 ML)
(circa Jan 2019)

n Using HorovodRunner for Distributed Deep Learning Training
n Integrating Horovod with Spark’s Barrier mode
n Simplified workflow for multi-GPU machines
https://docs.databricks.com/applications/machine-learning/train-model/distributed-

training/horovod-runner.html
https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

n GraphFrames to add a Pregel-like API

n Enhance Databricks Runtime support for TensorBoard (visualization toolkit for 
Tensorflow)

n Speed-up Cluster start-time when Pytorch is included.

https://databricks.com/blog/2019/01/30/databricks-runtime-5-2-ml-features-multi-gpu-workflow-pregel-api-
and-performant-graphframes.html

https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow
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Summary of 
Key New Features in Spark 3.0
(part of Databricks Runtime 7.0)

(circa June 2020)
n ANSI SQL Compliance
n 2x performance improvement on TPC-DS (SQL benchmark) over 

Spark 2.4 by Adaptive Query execution, Dynamic Partition Pruning 
and other optimizations.

n New UI for Structured Streaming
n Improvements in Pandas APIs
n Better Python error Handling
n Speed-up in calling R UDF (upto 40x)

https://databricks.com/blog/2020/06/18/introducing-apache-spark-3-0-now-
available-in-databricks-runtime-7-0.html
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Summary of 
Key New Features in Spark 3.1 
(part of Databricks Runtime 8.0)

(circa March 2021)
n ANSI SQL Compliance
n More Query Optimization
n Shuffle Hash Join improvements
n History Server support of Structured Streaming
n Project Zen has been initiated to:

n Provide Better Interoperability with other Python libraries
n Improve PySpark’s Usability

https://databricks.com/blog/2021/03/02/introducing-apache-spark-3-1.html
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Summary of 
Key New Features in Spark 3.2 

(part of Databricks Runtime 10.0)
(circa Oct 2021)

n Pandas API layer on PySpark – (from Project Zen)
n Also provide Interactive Data visualization

n ANSI SQL Compliance - ANSI Mode GA

n Productionize Adaptive Query Execution to speedup Spark SQL at runtime

n Introduce RockDB State-store to enable scalable state processing

n Event-time based Session Window support

n Support push-based Shuffle

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html

https://spark.apache.org/releases/spark-release-3-2-0.html

https://spark.apache.org/third-party-projects.html

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html
https://spark.apache.org/releases/spark-release-3-2-0.html
https://spark.apache.org/third-party-projects.html

