
IEMS5730/ IERG4330/ESTR4316
Spring 2022

Machine Learning Support and Beyond

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Spark ML 2

Acknowledgements
n These slides are adapted from the following sources:

n Matei Zaharia, “Spark 2.0,” Spark Summit East Keynote, Feb 2016.
n Reynold Xin, “The Future of Real-Time in Spark,” Spark Summit East Keynote, Feb 2016.
n Michael Armburst, “Structuring Spark: SQL, DataFrames, DataSets, and Streaming,” Spark Summit East Keynote, Feb

2016.
n Ankur Dave, “GraphFrames: Graph Queries in Spark SQL,” Spark Summit East, Feb 2016.
n Michael Armburst, “Spark DataFrames: Simple and Fast Analytics on Structured Data,” Spark Summit Amsterdam, Oct

2015.
n Michael Armburst et al, “Spark SQL: Relational Data Processing in Spark,” SIGMOD 2015.
n Michael Armburst, “Spark SQL Deep Dive,” Melbourne Spark Meetup, June 2015.
n Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.
n Joseph K. Bradley, “Apache Spark MLlib’s past trajectory and new directions,” Spark Summit Jun 2017.
n Joseph K. Bradley, “Distributed ML in Apache Spark,” NYC Spark MeetUp, June 2016.
n Ankur Dave, “GraphFrames: Graph Queries in Apache Spark SQL,” Spark Summit, June 2016.
n Joseph K. Bradley, “GraphFrames: DataFrame-based graphs for Apache Spark,” NYC Spark MeetUp, April 2016.
n Joseph K. Bradley, “Practical Machine Learning Pipelines with MLlib,” Spark Summit East, March 2015.
n Joseph K. Bradley, “Spark DataFrames and ML Pipelines,” MLconf Seattle, May 2015.
n Ameet Talwalkar, “MLlib: Spark’s Machine Learning Library,” AMPCamps 5, Nov. 2014.
n Shivaram Venkataraman, Zongheng Yang, “SparkR: Enabling Interactive Data Science at Scale,” AMPCamps 5, Nov.

2014.
n Tathagata Das, “Spark Streaming: Large-scale near-real-time stream processing,” O’Reilly Strata Conference, 2013.
n Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” AMPCAMP 3, 2013.
n Jules Damji, “Jumpstart on Apache Spark 2.X with Databricks,” Spark Sat. Meetup Workshop, Jul 2017.
n Sameer Agarwal, “What’s new in Apache Spark 2.3,” Spark+AI Summit, June 2018.
n Reynold Xin, Spark+AI Summit Europe, 2018.
n Hyukjin Kwon of Hortonworks, “What’s New in Spark 2.3 and Spark 2.4,” Oct 2018.
n Matel Zaharia, “MLflow: Accelerating the End-to-End ML Lifecycle,” Nov. 2018.
n Jules Damji, “MLflow: Platform for Complete Machine Learning Lifecycle,” PyData, Jan 2019.

n All copyrights belong to the original authors of the materials.

Spark ML 3

About Spark for MLlib

Spark ML 4

About Apache Spark MLlib
Started at Berkeley AMPLab

(Apache Spark 0.8)

By Apache Spark 2.1 (circa Apr 2017)
•Contributions from 75+ orgs, ~250 individuals
•Development driven by Databricks: roadmap
+ 50% of PRs
•Growing coverage of distributed algorithms

Spark ML 5

MLlib Goals

General Machine Learning library for big data
• Scalable & robust
• Coverage of common algorithms
• Leverages Apache Spark

Tools for practical workflows

Integration with existing data science tools

Spark ML 6

Apache Spark MLlib

• spark.mllib
• Pre MLlib < Spark 1.4
• Spark mllib was a

lower level library that
used Spark RDDs
• Use LabeledPoint,

Vectors and Tuples
• Maintenance Mode

only after Spark 2.X

// Load and parse the data

val data = sc.textFile("data/mllib/ridge-data/lpsa.data")

val parsedData = data.map { line =>

val parts = line.split(',')

LabeledPoint(parts(0).toDouble, Vectors.dense(parts(
1).split(' ').map(_.toDouble)))

}.cache()

// Building the model

val numIterations = 100

val stepSize = 0.00000001

val model = LinearRegressionWithSGD.train(parsedDa
ta, numIterations, stepSize)

// Evaluate model on training examples and compute
training error

val valuesAndPreds = parsedData.map { point =>

val prediction = model.predict(point.features)

(point.label, prediction)

}

Spark ML 7

Gradient Descent

Spark ML 8

k-means (scala)

Spark ML 9

k-means (python)

Spark ML 10

Dimension Reduction + k-means

Spark ML 11

Collaborative Filtering
via Alternating Least Square (ALS) method

Spark ML 12

Combine Machine Learning with Streaming

§Learn models offline, apply them online

Spark ML 13

Spark Streaming + MLlib

Spark ML 14

Streaming MLlib Algorithms

Spark ML 15

Spark SQL + MLlib

Spark ML 16

Spark SQL and MLlib

Spark ML 17

GraphX + MLlib

Spark ML 18

Evolution of the Apache Spark MLlib

n Started with Spark 0.8 in AMPLab in 2014 with RDD-based API.
n Migration to Spark DataFrames (aka spark.ml) since v1.3 and aims to

achieve feature-parity by v2.3.
n RDD-based MLlib API entered maintenance mode (i.e. no new features

added) since v2.0 ; expected to be removed by v3.0.
n Contributions by 75+ orgs, ~250 individuals.
n Distributed algorithms that scale linearly with the data.
n In 2018, the MLflow platform (mlflow.spark) emerged to provide API for

logging & loading MLlib models to enhance the complete ML lifecycle.

Spark ML 19

Machine Learning Support for Spark
(via MLlib or spark.ml)

Spark ML 20

Machine Learning Support for Spark
(via MLlib or spark.ml)

nClassification
n Logistic regression
n Naive Bayes
n Streaming logistic regression
n Linear SVMs
n Decision trees
n Random forests
n Gradient-boosted trees
n Multilayer perceptron

nRegression
n Ordinary least squares
n Ridge regression
n Lasso
n Isotonic regression
n Decision trees
n Random forests
n Gradient-boosted trees
n Streaming linear methods
n Generalized Linear Models

nFrequent itemsets
n FP-growth
n PrefixSpan

Clustering
•Gaussian mixture models
•K-Means
•Streaming K-Means
•Latent Dirichlet Allocation
•Power Iteration Clustering
•Bisecting K-Means

Statistics
•Pearson correlation
•Spearman correlation
•Online summarization
•Chi-squared test
•Kernel density estimation
•Kolmogorov–Smirnov test
•Online hypothesis testing
•Survival analysis

Linear algebra
•Local dense & sparse vectors & matrices
•Normal equation for least squares
•Distributed matrices

• Block-partitioned matrix
• Row matrix
• Indexed row matrix
• Coordinate matrix

•Matrix decompositions

Recommendation
•Alternating Least Squares

Feature extraction &
selection
•Word2Vec
•Chi-Squared selection
•Hashing term frequency
•Inverse document frequency
•Normalizer
•Standard scaler
•Tokenizer
•One-Hot Encoder
•StringIndexer
•VectorIndexer
•VectorAssembler
•Binarizer
•Bucketizer
•ElementwiseProduct
•PolynomialExpansion
•Quantile discretizer
•SQL transformer

Model import/export
Pipelines

List based on Spark 2.0

Spark ML 21

An Ideal ML Workflow

Set Business
Goals

Understand
Your Data

Create
Hypothesis

Devise
Experiment

Prepare Data

Train-Tune-Test
Model

Deploy Model

Measure /
Evaluate
Results

Spark ML 22

But Real-World ML workflows are complex

n Specify the pipeline
n Re-run on new data
n Inspect the results
n Tune the parameters

n Usually, each step of a pipeline is easier
with one framework

Spark ML 23

Real-world ML Workflows (Pipelines)
are Complex

23

Train model 1

Evaluate

Datasource 1
Datasource 2

Datasource 3

Extract featuresExtract features

Feature transform 1

Feature transform 2

Feature transform 3

Train model 2

Ensemble

Spark ML 24

Example: Text Classification

Spark ML 25

Training & Testing

Spark ML 26

Example ML Workflow

Spark ML 27

Example ML Workflow

Spark ML 28

Example ML Workflow

Spark ML 29

Example ML Workflow

Spark ML 30

Recap the Pain Points

Spark ML 31

Apache Spark – ML Pipelines

• spark.ml
• Spark > 1.4
• Spark.ML

pipelines – able
to create more
complex models
• Integrated with

DataFrames

// Let's initialize our linear
regression learner
val lr = new LinearRegression()

// Now we set the parameters for the
method
lr.setPredictionCol("Predicted_PE")
.setLabelCol("PE").setMaxIter(100).setRe
gParam(0.1)

// We will use the new spark.ml pipeline
API. If you have worked with scikit-
learn this will be very familiar.

val lrPipeline = new Pipeline()
lrPipeline.setStages(Array(vectorizer,
lr))

// Let's first train on the entire
dataset to see what we get
val lrModel =
lrPipeline.fit(trainingSet)

Spark ML 32

Key Concepts of ML Pipeline in Spark

n DataFrames: Provide a Unified API to hold the ML Dataset
n Structured Data with Flexible Types
n Add & Remove Columns during ML Pipeline execution
n Distributed, Optimized Implementation

n The notion of Pipeline in Spark MLlib
n To support Simple construction and Tuning of Machine

Learning Workflows
n Abstractions for ML Pipeline:

n Transformers, Estimators and Evaluators
n Parameters: API & Tuning
n ML Pipeline API similar to scikit-learn

Spark ML 33

Use a DataFrame to hold the ML dataset
under processing

Spark ML 34

Extract Features

Spark ML 35

Fit a Model

Spark ML 36

Evaluate Performance

Spark ML 37

Key Concepts in ML Pipeline in Spark
n Transformer:

n An algorithm which can transform one Dataframe into another
Dataframe.

Example: ML model is a Transformer which transforms a DataFrame with
features into a DataFrame with predictions

n Estimator:
n An algorithm which can be fitted on a DataFrame to produce a

Transformer.
Example: A learning algorithm is an Estimator which trains on a

Dataframe and produces a model (i.e. a Transformer)
n Pipeline:

n A sequence of PipelineStages (i.e. a chain of Transformers and
Estimators) to be run in a specific order to realize a ML workflow.

n Evaluator:
n A Transformer which computes a Metric to measure how well a fitted

model does on held-out test data
n Parameters: API & Tuning
References:
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-mllib/spark-mllib-evaluators.html
https://spark.apache.org/docs/latest/ml-pipeline.html#parameters

Spark ML 38

More details on Pipeline Components
Transformers
nA Transformer is an abstraction that includes feature transformers and learned models. Technically, a
Transformer implements a method transform(), which converts one DataFrame into another, generally by
appending one or more columns. For example:
nA feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g.,
feature vectors), and output a new DataFrame with the mapped column appended.
nA learning model might take a DataFrame, read the column containing feature vectors, predict the label for
each feature vector, and output a new DataFrame with predicted labels appended as a column.

Estimators
nAn Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on data.
Technically, an Estimator implements a method fit(), which accepts a DataFrame and produces a Model, which
is a Transformer. For example, a learning algorithm such as LogisticRegression is an Estimator, and calling fit()
trains a LogisticRegressionModel, which is a Model and hence a Transformer.
nA Predictor is a specialization of Estimator for a PredictionModel with its own abstract train method()

Evaluators
nAn Evaluator is a transformer that maps a Dataframe into a metric showing how good a model is.

Params and ParamMap:
nMLlib Estimators and Transformers use an uniform API for specifying parameters
nA Param is a named parameter with self-contained doc ; A ParamMap is a set of (parameter, value) pairs
nTwo main ways to pass parameters to an algorithm:

n Set parameters for an instance. E.g., if lr is an instance of LogisticRegression, one could call lr.setMaxIter(10) to make
lr.fit() use at most 10 iterations. This API resembles the API used in spark.mllib package.

n Pass a ParamMap to fit() or transform(). Any parameters in the ParamMap will override parameters previously specified
via setter methods.

Spark ML 39

Load Data

Spark ML 40

Load Data

Spark ML 41

Training Workflow

Spark ML 42

Abstraction: Transformer

Spark ML 43

Abstraction: Estimator

Spark ML 44

Abstraction: Evaluator

Spark ML 45

Abstraction: Model

Spark ML 46

(Recall) Abstraction: Estimator

Spark ML 47

Abstraction: Pipeline

Spark ML 48

Abstraction: PipelineModel

Spark ML 49

Summary of Abstractions

Spark ML 50

A Pipeline Example

Spark ML 51

Parameters

Spark ML 52

Parameter Tuning

Spark ML 53

Sample Code for an ML Pipeline

Spark ML 54

Summary of Spark ML Pipelines

n Also Support Models Import and Export via “ML Persistence”

Spark ML 55

Enabling Interactive (Big) Data Science with
SparkR

Spark ML 56

SparkR – R package for Spark

n R Interface support via SparkR (R with RDD = R2D2)
since Spark 1.4 (released since June 2015)
n Exposes DataFrames and MLlib in R:

Spark ML 57

SparkR – R package for Spark

Spark ML 58

Getting closer to Idiomatic R

Spark ML 59

SparkR

Spark ML 60

Example: Word Counting with SparkR

Spark ML 61

Example: Logistic Regression with SparkR

Spark ML 62

SparkR Implementation

n Very similar to PySpark
n Relatively easy to extend Spark

n 329 lines of Scala code
n 2079 lines of R code
n 693 lines of Test code in R

Spark ML 63

Spark: A Recap and Future Directions

Powerful Stack – Agile Development

non-test, non-example source lines

GraphX

Streaming
SparkSQL

Your Application
here

Spark Part II 65

Spark/ BDAS Timeline till v2.0

Spark Part II 66

Major Features in Spark 2.0

Spark Part II 67

Boosting Spark Performance via
Project Tungsten

Goal
To Overcome JVM Performance limitations and bring Spark
performance closer to Bare Metal via:

nNative Memory Management and Binary Processing: leveraging
application semantics to manage memory explicitly and eliminate
the overhead of JVM object model and garbage collection
nCache-aware computation: algorithms and data structures to
exploit memory hierarchy
nRuntime Code generation: using code generation to exploit
modern compilers and CPUs

Spark Part II 68

Project Tungsten: Key areas of Optimization

Spark Part II 69

Optimized Data Representations

n Java Objects have two downsides:
n Space overheads
n Garbage collection overheads

n Tungsten sidesteps these problems by performing its
own manual memory management

Spark Part II 70

Further Performance Optimization via
Project Tungsten

Spark Part II 71

Phased introduction of Tungsten
In Spark 1.4-1.6
nAdded Binary Storage and Basic Code Generation
nDataFrame + Dataset APIs enable Tungsten in User Programs
nTungsten also being used under SparkSQL + parts of MLlib

By Spark 2.0
nWhole-stage Code Generation

n Remove expensive Iterator calls
n Fuse across multiple operators

nVector Processing
n Optimized Input/Output

n Parquest + Built-in Cache

Spark Part II 72

Spark Ver. 2.0 Stack (circa 2015)
DataFrame + Tungsten

Spark Part II 73

Evolution Timeline of Spark

Spark Part II 74

Spark 1.6 vs. Spark 2.x

Spark Part II 75

Foundational Spark 2.x Components

Spark Part II 76

n RDD as the low-level API in Spark
n For control and certain type-safety in Java/ Scala

n Datasets & DataFrames give richer semantics &
optimizations
n For semi-structured data and DSL like operations
n New libraries will increasingly use these as interchange

format
n Examples: Structured Streaming, MLib, GraphFrames,

and Deep Learning Pipelines

Long Term Role of
RDD, DataFrames & DataSets on Spark

Spark Part II 77

SparkSession subsumes SparkContext
n Starting v2.0, SparkSession becomes the unified entry point,

i.e. a Conduit, to Spark
n Create Datasets/ DataFrames
n Read/Write Data
n Work with metadata
n Set/Get Spark Configuration
n Driver uses for Cluster Resource Management

Spark Part II 78

Major Features in Spark 2.0

Spark Part II 79

Major Features since Spark 2.2

Spark Part II 80

Key Features in Apache Spark 2.3 & 2.4

Spark Part II 81

Summary of
Key Efforts in Spark 2.X (ver2.4 circa Nov 2018)

n Structured Streaming
n Unification of the APIs
n Event-time Aggregations/ Processing to handle out-of-order/late data
n Other Streaming sources/sinks
n Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames
n Support of Continuous Processing model, i.e. true (low-latency) streaming

instead of stream processing via micro-batching.
n Spark over Kubernetes: deploying Spark not only as a framework but also as a

containerized distributed application/ library !
n Machine Learning – Optimized Model Tuning

n Iteration as a First-Class concept in DataFrames
n Cost-based Query Optimization for ML/Graph Algorithms

n Caching, Communication, Serialization, Compression
n Spark + GPUs
n High-level API for Deep-Learning Pipeline in Spark MLlib

n Built on TensorFlow, Keras, BigDL
n Project Hydrogen - enhancing Integration of other ML frameworks with Spark
n Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow

Spark Part II 82

More Details on some
Key Features since Spark 2.2

Spark Part II 83

Continuous (Stream) Processing

n A new execution mode introduced since V2.2 that
allows fully pipelined execution (like Flink)
n Streaming execution without micro-batches
n Support asynchronous checkpoints and ~1msec latency
=> To enable Spark to stay competitive with Flink
n No changes required for user codes.

n Still WIP, not all features are supported as of Mar
2019.

n See initial proposal at:
n https://issues.apache.org/jira/browse/SPARK-20928

Spark Part II 84

Continuous (Stream) Processing (cont’d)

Structured Streaming

Spark Part II 85

Continuous (Stream) Processing (cont’d)

Micro Batch Execution

Spark Part II 86

Continuous (Stream) Processing (cont’d)

Micro Batch Execution

Spark Part II 87

Continuous (Stream) Processing (cont’d)

Spark Part II 88

Continuous (Stream) Processing (cont’d)

Spark Part II 89

Continuous (Stream) Processing (cont’d)

Spark Part II 90

Continuous (Stream) Processing (cont’d)

Spark Part II 91

Continuous (Stream) Processing (cont’d)

Spark Part II 92

Major Features since Spark 2.2

Spark Part II 93

Stream to Stream Joins (in V2.3)

Spark Part II 94

Major Features since Spark 2.2

Spark Part II 95

ML on Streaming

n ML model transformation/ prediction on Batch and
Streaming data with Unified API

n After fitting a ML model or ML Pipeline, user can
deploy it in a Streaming job
n

Spark Part II 96

Major Features since Spark 2.2

Spark Part II 97

Apache Spark on Kubernetes

See also: https://spark.apache.org/docs/2.3.2/running-on-kubernetes.html

Spark Part II 98

Apache Spark on Kubernetes (cont’d)

n Driver runs in a Kubernetes pod created by the
submission client and creates pods that run the
executors in response to requests from the Spark
Scheduler

n Make direct use of Kubernetes clusters for Multi-
tenancy and sharing through Namespaces and
Quotas, as well as administrative features such as
Pluggable Authorization and Logging.

Spark Part II 99

Apache Spark and Kubernetes (cont’d)

Spark Part II 100

Better Support ML/ AI in Production
with MLflow

Spark Part II 101

Hidden Technical Debt in Machine Learning Systems
(A NIPS 2015 paper from Google)

Spark Part II 102

MLflow

Components of MLflow:

Goal of MLflow:
n To provide the tools to simplify the ML lifecycle (in an industrial

production-grade environment)
n A Lightweight, open platform that integrates with other ML systems

readily
n Available APIs: Python, Java and R
n Develop model locally and track runs locally or remotely
n Deploy locally, cloud or on premise
n Visualize experiments

Spark Part II 103

Model Development without MLflow

Spark Part II 104

Key Concepts in Tracking with MLflow

n Parameters: Key-value inputs to your code
n Metrics: numeric values (can update over time)
n Tags and Notes: information about a run
n Artifacts: files, data and models
n Source: what code was run ?
n Version: Which version of the code ?

Spark Part II 105

MLflow Tracking API

Spark Part II 106

Model Development with MLflow

n Data Scientist/ Model developer can track, inspect and
compare the results of the running of different models/
parameters via the MLflow UI

Spark Part II 107

MLflow Tracking

Spark Part II 108

Model Deployment without MLflow

Spark Part II 109

Packaging Code: MLflow Projects

Spark Part II 110

Example MLflow Project

Spark Part II 111

Packaging Models: MLflow Models

Spark Part II 112

Example MLflow Model

Spark Part II 113

Model Deployment with MLflow

Spark Part II 114

Ongoing MLflow Roadmap (circa Jan 2019)
n Tensorflow, Keras, PyTorch, H2O, MLleap, MLlib

integrations
n Java and R MLflow Client language APIs
n Multi-step Workflows
n Hyperparameter Tuning
n Integration with Databricks Tracking Server
n Support for Data Store (e.g. MySQL)
n Stablize MLflow APIs 1.0
n Model metadata, management and registry
n Hosted MLflow

Spark Part II 115

Project Hydrogen:
Better Integration of other ML/ AI frameworks

with Spark

Spark Part II 116

Two Challenges in supporting
ML frameworks in Spark

Spark Part II 117

User Defined Functions (UDFs)
n UDFs allow the execution of arbitrary code ; often

used for integration with ML frameworks
n e.g., Prediction on data using Tensorflow

n But Exchanging data with UDFs only is carried out
only One-Row-at-a-Time => Waste CPU cycles

Spark Part II 118

Introducing “Vectorized Data Exchange”
n UDFs run 3x to 240x faster !

Spark Part II 119

Execution Models

Spark Part II 120

What if a Task Crashes ?

=> Incompatible Execution models !

Spark Part II 121

Unifying Execution Models with
Barriers Execution (aka Gang Execution)

Spark Part II 122

Roadmap to support
Barrier Execution (aka Gang Execution)

Spark Part II 123

Project Hydrogen

Timeline
n Spark 2.3 (Spring 2018): Basic Vectorized UDFs
n Spark 2.4 (Fall 2018): Barrier Scheduler and more

Vectorized UDFs support
n Spark 3.0 (2019): General Availability (GA) and

standard format for data

Spark Part II 124

Summary of
Key Efforts in Spark 2.X (ver2.4 circa Nov 2018)

n Structured Streaming
n Unification of the APIs
n Event-time Aggregations/ Processing to handle out-of-order/late data
n Other Streaming sources/sinks
n Support Structured Streaming in other libraries, e.g. MLlib, GraphFrames
n Support of Continuous Processing model, i.e. true (low-latency) streaming

instead of stream processing via micro-batching.
n Spark over Kubernetes: deploying Spark not only as a framework but also as a

containerized distributed application/ library !
n Machine Learning – Optimized Model Tuning

n Iteration as a First-Class concept in DataFrames
n Cost-based Query Optimization for ML/Graph Algorithms

n Caching, Communication, Serialization, Compression
n Spark + GPUs
n High-level API for Deep-Learning Pipeline in Spark MLlib

n Built on TensorFlow, Keras, BigDL
n Project Hydrogen - enhancing Integration of other ML frameworks with Spark
n Better Infrastructure support of Production-level Complete ML Life-cycle with MLflow

Spark Part II 125

Summary of
Key New Features in Spark 2.4.x

(part of Databricks Runtime 5.2 ML)
(circa Jan 2019)

n Using HorovodRunner for Distributed Deep Learning Training
n Integrating Horovod with Spark’s Barrier mode
n Simplified workflow for multi-GPU machines
https://docs.databricks.com/applications/machine-learning/train-model/distributed-

training/horovod-runner.html
https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

n GraphFrames to add a Pregel-like API

n Enhance Databricks Runtime support for TensorBoard (visualization toolkit for
Tensorflow)

n Speed-up Cluster start-time when Pytorch is included.

https://databricks.com/blog/2019/01/30/databricks-runtime-5-2-ml-features-multi-gpu-workflow-pregel-api-
and-performant-graphframes.html

https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://databricks.com/session/distributed-deep-learning-with-apache-spark-and-tensorflow

Spark Part II 126

Summary of
Key New Features in Spark 3.0
(part of Databricks Runtime 7.0)

(circa June 2020)
n ANSI SQL Compliance
n 2x performance improvement on TPC-DS (SQL benchmark) over

Spark 2.4 by Adaptive Query execution, Dynamic Partition Pruning
and other optimizations.

n New UI for Structured Streaming
n Improvements in Pandas APIs
n Better Python error Handling
n Speed-up in calling R UDF (upto 40x)

https://databricks.com/blog/2020/06/18/introducing-apache-spark-3-0-now-
available-in-databricks-runtime-7-0.html

Spark Part II 127

Summary of
Key New Features in Spark 3.1
(part of Databricks Runtime 8.0)

(circa March 2021)
n ANSI SQL Compliance
n More Query Optimization
n Shuffle Hash Join improvements
n History Server support of Structured Streaming
n Project Zen has been initiated to:

n Provide Better Interoperability with other Python libraries
n Improve PySpark’s Usability

https://databricks.com/blog/2021/03/02/introducing-apache-spark-3-1.html

Spark Part II 128

Summary of
Key New Features in Spark 3.2

(part of Databricks Runtime 10.0)
(circa Oct 2021)

n Pandas API layer on PySpark – (from Project Zen)
n Also provide Interactive Data visualization

n ANSI SQL Compliance - ANSI Mode GA

n Productionize Adaptive Query Execution to speedup Spark SQL at runtime

n Introduce RockDB State-store to enable scalable state processing

n Event-time based Session Window support

n Support push-based Shuffle

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html

https://spark.apache.org/releases/spark-release-3-2-0.html

https://spark.apache.org/third-party-projects.html

https://databricks.com/blog/2021/10/19/introducing-apache-spark-3-2.html
https://spark.apache.org/releases/spark-release-3-2-0.html
https://spark.apache.org/third-party-projects.html

